Distributed Data Structures for Peer-to-Peer Systems

A Dissertation
Presented to the Faculty of the Graduate School
of
Yale University
in Candidacy for the Degree of

Doctor of Philosophy

By
Gauri Shah
Dissertation Director: James Aspnes

December 2003

© 2004 by Gauri Shah

All rights reserved.

Keywords: peer-to-peer, distributed algorithms, skip graphs, distributed hash tables,

fault-tolerant routing

To my parents, Rajni and Sudhir Shah, for a thinking life.

Abstract

Distributed Data Structures for Peer-to-Peer Systems

Gauri Shah
2003

Peer-to-peer systems are distributed systems of heterogeneous machines with no central
authority, that are used for efficient management and location of shared resources. Such
systems have become very popular for Internet applications in a short period of time be-
cause they provide inherent scalability by distributing the load of maintaining the system
across all the participants. At the same time, they present new challenges in designing
distributed data structures that can provide the desired functionality such as data avail-
ability, dynamic system maintenance, and support for complex queries using untrusted and
unreliable components.

We present two complementary distributed data structures that can be used to im-
plement efficient peer-to-peer systems. The first data structure is an abstract model of
a distributed hash table, which is used as an overlay network by many contemporary
peer-to-peer systems. This data structure provides inherent load balancing, and the number
of routing hops for a search is logarithmic in the number of resources in the system. We
study greedy routing in this model, and prove lower bounds and upper bounds on routing
in the presence of failures in the network. We present some heuristics for constructing the
network and give experimental results on the performance in practice.

We also present a novel distributed data structure called a skip graph, which is a trie
of skip lists that share lower layers. A skip graph provides most of the functionality of a
distributed hash table. In addition, it supports spatial locality and complex searches such
as near matches to a key, keys within a specified range, or approximate queries. We give
simple and straightforward algorithms to search and insert a new resource in a skip graph.
We also give a repair mechanism that can be combined with the fault-tolerance properties

to give a strong foundation for a highly resilient network.

Acknowledgments

I still find it hard to believe that this is the end of my graduate school days, and that
the time has come to express my thanks for the wonderful time I have spent here at Yale.
It well may be because I never quite realized that it would happen, let alone so soon.

Let me start by thanking the one person who has been most responsible for this dis-
sertation seeing the light of day - my advisor, James Aspnes. I can easily imagine myself
leaving Yale with a Masters degree in hand, had it not been for Jim. With his endless
encouragement, patience, and enthusiasm, he has been a terrific advisor. He has taught me
many things, right from simple mathematical tricks to the importance of cartoons in talks.
Most importantly, he always had the time for me whether I was asking him a fair price to
repair my broken car axle or discussing the proof of LazyClock. I will miss his delightful
humor and all the random conversations on topics such as the incorrect design of Viking
helmets. With due apologies to Jim, I cannot thank him enough for the opportunity to
bask in the light of his sheer brilliance for the last three years.

My appreciation also goes to all the other members of my committee for their valuable
feedback and time. I thank Joan Feigenbaum for much-needed advice on career choices.
Arvind Krishnamurthy was always ready to discuss practical issues in networking, and spare
cookies for me at tea-time. I am delighted that Antony Rowstron was enthusiastic enough
to come all the way across the Atlantic to attend my defense.

Dana Angluin has been a constant source of inspiration and a role model for me. She
was always encouraging when I talked to her about anything that bothered me, and I am
grateful to her for her invaluable advice on several occasions. René Peralta lightened the
atmosphere with his incredible sense of humor and a friendly smile next door at all times.

I thank the department administrative staff, especially Linda Dobb for taking care of
the inevitable university formalities, and Amelia Toensmeier and Clara Garguilo for helping
out with so many details like laptop reservations and expense reimbursements.

These acknowledgments would be incomplete without thanking my fellow graduate stu-
dents. My office-mate, Rahul Sami, has helped to build my character over the last year

by sharing his immense knowledge of system hacks and teaching me the importance of Zen

vi

sayings. Writing my dissertation was easier and a lot of fun because he was writing his
thesis at the same time. I have also shared some wonderful times with Karhan Akcoglu, my
office-mate for the first three years in this department. My heartfelt thanks to my other
friends Gabriel Loh, Patrick Huggins, Jatin Shah, Vijay Ramachandran, and Aleksandr
Yampolskiy, not only for the discussions related to research and otherwise, but for all the
fun times that we have shared together as well. Thanks are also due to Neha Menon for
proof reading my thesis.

Mayur has steadfastly stood by me through all my ups and downs in these last four
years. Life would have been meaningless without all the songs he has sung for me, the
frequent trips to California, and the long conversations about everything and nothing. And
this thesis would have been chock-full of errors without his careful proof reading. I find
it impossible to thank my best friend so I will just say that this dissertation would have
remained incomplete without him.

Finally, as much as I would like to, I cannot thank my family enough in words, for their
unconditional love and support at all times. My sister Uma and my brother-in-law Manoj
have always encouraged me, and I have never had to worry about my familial duties while I
was studying due to their steadfast support. My parents have given me far more than I ever
dreamt of. I am forever indebted to them for having given me the choice and the chance to

pursue what I desired, and to be what I am today. To them, I dedicate this thesis.

vii

Contents

Acknowledgments vi
Table of Contents viii
List of Figures xi
List of Tables xii
1 Introduction 1
1.1 The peer-to-peer paradigm 2
1.2 Evolution of peer-to-peer systems, 5
1.2.1 First-generation systems 5
1.2.2 Contemporary systemso e 7

1.3 Model e e e 8
1.4 Our contributions e 10
1.5 Summaryo e e e e e 12
2 Related Work 13
2.1 First-generation systems oo 13
2.2 Before Distributed Hash Tables 0. 15
2.2.1 Hashing 15
2.2.2 Plaxton/Rajaraman/Richa [PRR] algorithm 16

2.3 Distributed Hash Tables 17
2.3.1 Content-addressable network, 17
2.3.2 Tapestryand Pastry, 18
2.3.3 Chord e e 20

2.4 Censorship-resistant networkso o oL 21
2.5 Other systems. e e e 22
2.5.1 Non-virtualized systems 23
2.5.2 Hybridsystems 24

2.6 Improved featureso 24
2.6.1 Search techniques. L o Lo 25
2.6.2 Load balancing 26

2.7 Applications 27
2.7.1 Publishingsystems L. 27
2.7.2 Web publishing and caching 28
273 Nameservices. e 28
2.7.4 Network performance measurement 29

viii

2.7.5 Managing flash crowdso oL 29

2.7.6 Group communication oL 29

3 Fault-tolerant Routing 31
3.1 Overviewo e e e e e e e 31
3.2 Ourapproach e e 33
3.2.1 Comparison with DHTs 35
3.2.2 Tool o e e e 37

3.3 Lower bounds L. 38
3.4 Upper bounds without failures 41
3.4.1 Single long-distance link o000 41
3.4.2 Multiple long-distance links 43

3.5 Upper bounds with failures 46
3.5.1 Failureoflinks 47
3.5.2 Failureofnodes. L 50

3.6 Constructionof graphs o o Lo o 53
3.7 Experimentalresultso o oL 56
3.8 Conclusions and future worko 0oL 59
4 Skip Graphs 61
4.1 Drawbacks of DHTs 61
4.2 Ourapproach L e e 62
4.3 Skip graphs L e e e 63
4.3.1 Implementation Lo oo 67

4.4 Related work L 68
4.5 Algorithms for askipgraph Lo, 70
4.5.1 Thesearch operation 71
4.5.2 The insert operation L oo 73
4.5.3 The delete operation 77
4.5.4 Correctness of algorithms, 79

4.6 Applications of skip graphs oL L. 86
4.7 Fault tolerance L e 88
4.71 Random failures 89
4.7.2 Adversarial failureso 90

4.8 Repair mechanism L Lo 95
4.8.1 Maintaining the invariant00 96
4.8.2 Restoring invalid constraints 100
4.8.2.1 Restoring backpointer constraints 100

4.8.2.2 Restoring inter-level constraints 103

4.8.3 Proof of correctness L o 108

4.9 Congestion e e e e e e e e e 111
4.9.1 Average congestion for a singlesearch 112
4.9.2 Distribution of the average congestion 114

4.10 Conclusions and future work L oo oL 116

ix

5 Conclusions and Open Problems 118

5.1 Conclusions L e e e e e e 118
5.2 Open Problems 120
5.2.1 State-Locality trade-off 120
5.2.2 Richer query languageo oL 121
5.2.3 Efficient repair L 122
5.2.4 Topologically-sensitive overlay networks 122
5.2.5 Handling failures o oL 123
52.6 Newdesigns. i 124
Bibliography 125

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

First generation systems: Napster, Gnutella, KaZaA, and Morpheus. 14
Content-addressable network.o oL 17
Tapestry. o e e e 19
Chord. e e e e e e e 20
Censorship-resistant network o oo 22
TerraDir. o 23
A sample metric-space embedding.o 0oL 34
Different links chosen for one-sided and two-sided routing. 40
Different nodes reachable from source node to target node. 42
Multiple long-distance links. 43
Failure of links. e 47
The derived link distribution. o 0oL 55
Error between the derived link distribution and the ideal one. 55
Failed searches. L 57
Average number of routing hops. oL oo oL 58
Comparing failed searches in the ideal and derived networks. 58
Askiplist. o e 64
Askipgraph. L 66
Modular composition of data structures. 69
Insert inaskipgraph. o Lo 74
Violation of Constraints 1and 3. 81
Version control with a skip graph. o0 86
User-level replication with a skip graph. 87
Isolated nodes/Primary component with node failures. 89
Fraction of failed searches with failed nodes. 90
Violations of backpointer and inter-level constraints. 101
Two-way merge to repair a violated inter-level constraint. 104
One-way merge to repair a violated inter-level constraint. 104
Two-way merge to repair a violated inter-level constraint. 105
zipper0Op operation to merge nodes on the same level. 106
Congestion in the nodes of a skip graph. 114

xi

List of Tables

2.1 An example of the PRR routing table. 17
3.1 Summary of upper and lower bounds for greedy routing. 59
4.1 List of all the variables stored at each node. 71
5.1 Comparison of peer-to-peer systems. 119

xii

Chapter 1

Introduction

“The power of the network increases exponentially by the num-
ber of computers connected to it. Therefore, every computer added
to the network both uses it as a resource while adding resources in a

spiral of increasing value and choice.”

-ROBERT M. METCALFE (1946-)

In the last decade, we have witnessed a boom in the use of the Internet for distributed
applications. One of the popular applications is the use of peer-to-peer systems for
music file sharing between communities of end users. In January 1999, Shawn Fanning left
Northwestern University in his freshman year to develop the software for Napster [85], which
was probably the first publicly-deployed system for music sharing. Napster was an instant
success, used by millions of people all over the world soon after its inception. However, it
was sued by the Record Industry Association of America (RIAA) for copyright infringement
in December 1999. In spite of a partnership with the German media company Bertelsmann
AG, to develop a membership-based distribution system that would guarantee payments to
artists, Napster was eventually shut down by legal authorities in 2001. This, however, did
not put an end to peer-to-peer file sharing, and we saw the emergence of many decentralized
Napster-clones including Gnutella [43], MojoNation [81], KaZaA [61], AudioGalaxy [7], and
Morpheus [82]. As of May 2003, there are more than 220 million downloads of KaZaA

and 31 million of Morpheus*. Peer-to-peer systems continue to thrive; in fact, they are no
longer restricted to sharing music files, videos, software, and other documents, but have
moved beyond the realms of file sharing to projects such as SETI@home [107] which pools
spare processing power of participants rather than their music file collections. Today, we
see the use of these systems for a multitude of new applications such as data storage [69,
16, 100, 98], group communication [19, 101], web publishing and caching [118, 54, 55], and
messaging [114].

This thesis explores the technical aspects of peer-to-peer systems and introduces new
data structures to implement such systems efficiently. While the use of peer-to-peer systems
raises a plethora of social, legal, and moral issues, we restrict our focus in this dissertation

to the technical problems that arise in their design and deployment.

1.1 The peer-to-peer paradigm

The natural first question to ask is: what exactly are peer-to-peer systems? Peer-to-peer
systems are large-scale, distributed networks of computers with no central authorityf. Each
computer or machine in a peer-to-peer system, also known as a peer, can be heterogeneous
with possibly varying computational power, and is subject to crash failures. Peer-to-peer
systems can be used for various different purposes such as: distributed content management,
distribution of computing cycles and people-to-people collaboration. For the rest of this
dissertation, we concentrate on the issues involved in content distribution, although the use
of peer-to-peer systems is by no means restricted to this area of focus.

In a typical content-distribution peer-to-peer system, each peer may have some re-
sources to share: these resources can be files, documents, web pages, temporary access to
local applications, connections to physical devices etc. Each resource is uniquely identified
by a key; for example, it could be a URL for a web page or the filename for a document.
The primary goal is to share the available resources efficiently among all the peers. Given

the key of a resource, or a set of keywords that describe a group of acceptable resources,

*Detailed statistics of download information can be found at http://www.download.com.
tThere can be some central agency that issues machine identifiers, for example IP addresses, but the
organization of the peer-to-peer system itself is decentralized.

we would like to design a peer-to-peer system that will locate resources in the system,
and enable sharing with minimum communication, storage, and maintenance. In a tra-
ditional client-server model, the responsibility to maintain such a system falls on a small
cluster of server machines. As opposed to that, peer-to-peer systems distribute the load
of maintenance among all the participating peers, thus providing inherent scalability and
load balancing. At the same time, new challenges have to be met to build efficient and
robust distributed data structures to implement such systems using individual, possibly
faulty components.

Scalable Distributed Data Structures was a term first coined by Litwin et al.[76]
in the context of distributed database systems. We seek to design similar large-scale, dis-
tributed data structures that easily support location and maintenance of shared resources,

and have the following desirable properties:

Decentralization: The data structure should be distributed among all the participants
of the system. A central server, or even a cluster of such servers, may prove to be
intolerant to faults, and will require considerable investment for high-performance

hardware and high bandwidth.

Scalability: The Internet user community has grown to be so large that distributed systems
need to cope with millions of users. In an ideal peer-to-peer system, the cost borne

by each participant should not depend too much on the size of the entire system.

Load balancing: We would like the cost of maintaining the system to be uniformly shared
between all the peers. Similarly, the system should be able to manage flash crowds
i.e., high data request volume due to temporal locality, when a particular resource
becomes extremely popular for a short period of time. For example, the popular web
site CNN (http://www.cnn.com) saw record traffic, hitting nine million page views an
hour during the terrorist attacks on September 11, 2001 in New York, USA, compared

to an ordinary volume of eleven million page views a day [39].

Dynamic maintenance: The massive parallelism in peer-to-peer systems, due to high

rate of machine arrivals and departures, presents some very challenging issues that

are trivially solved in a system with fixed membership. The system should be self-
configuring, and machines and resources should be added and deleted from the system

quickly without manual intervention or oversight.

Fault tolerance: The data structure should be resilient to both machine and link failures
in the system. KEven if a part of the system has failed, the data available in the
surviving machines should still be accessible, as long as it is located in the same
connected component as the requesting peer. Further, the system should gracefully

degrade with increasing failures.

Self-stabilization: Not only should the system survive disruptions due to failures, but
it should also heal automatically to restore ideal performance. The system should
have a repair mechanism that detects local inconsistencies such as machine failures or
link outages, and triggers maintenance operations with minimal overhead in terms of

network traffic.

Efficient searching: The primary goal of a peer-to-peer system is to locate resources
efficiently, and hence support for searching using a variety of specifications is a very
desirable property. Complex queries to locate resources such as range queries, near

matches to a key, and keyword matches should be supported by a rich query language.

Security: The system should be secure against attacks such as a denial-of-service attack,
where some miscreant participants may “flood” the system, thereby preventing legit-
imate traffic. In some applications, it may also be desirable to maintain anonymity of
the users, or provide resistance to censorship by preventing certain data items to be

deleted from the system.

Topologically-sensitive construction: Routing should be sensitive to network locality
such as distance traveled or latency along transmission paths. Two possible ap-
proaches are: (i) Proximity routing where machines are placed in the network to
exploit the underlying topology, and (ii) Proximity neighbor selection where the
closest neighbors (as per the proximity metric) are chosen among the set of potential

neighbors.

In this dissertation, we are primarily interested in developing approaches to design peer-

to-peer systems that focus on the features listed above.

1.2 Evolution of peer-to-peer systems

Before we look at contemporary peer-to-peer systems, we discuss the need for a new model
to implement peer-to-peer systems. The web has traditionally been used for content dis-
tribution. Was it feasible to use the web to implement peer-to-peer systems? There are
two important reasons that make the web unsuitable for our purposes. Firstly, the web is
based on a traditional client-server model where there are relatively few, more powerful, and
reliable server machines that are responsible for serving the content. A peer-to-peer system,
on the other hand, is a very dynamic system with peers continuously entering and leaving
the system. Traditional solutions to locate resources that can be used in a system with
fixed membership like the web, are not viable for such dynamic systems. Secondly, resource
location on the web is done using domain name servers that are organized hierarchically in
a tree. Each node of the tree stores some well-defined subset of the IP keyspace and services
requests for it. This tree approach is not very fault-tolerant; there is far too much load on
the nodes closer to the root, and even a single failure can partition the entire data struc-
ture. Replicating nodes may alleviate the problem but better solutions have been proposed
that retain the benefits of trees. The large-scale, distributed nature of the Internet and the
growing size of the consumer base have created the need for a new model for peer-to-peer
systems. However, we note that by no means are we claiming that the peer-to-peer model
will replace the client-server model in the near future; both models will co-exist depending
on the applications that they are being used for.

We now explore some of the designs that have been proposed for implementing peer-to-

peer systems.

1.2.1 First-generation systems

Napster [85] was the first publicly-deployed peer-to-peer system. It used a central sever

to maintain an index of (filename, IP address) pairs, and kept track of the locations of

all the music files in the system. When a user wanted a particular music file, she would
query this server, and upon receiving the IP address(es) of the machine(s) that hosted the
requested resource, she would download the file from that location. This file transfer was
decentralized and independent of the central index server. One potential argument against
this simple approach is the lack of scalability, but the existence of large-scale server clusters,
such as those used by popular web sites Google [46] and Yahoo [120], prove otherwise. How-
ever, the set-up of such systems may require considerable investment for high-performance
machines, high bandwidth etc. which makes it unsuitable for implementing a peer-to-peer
system. Additionally, the approach is not fault tolerant; the central server provides a single
vulnerable point of failure. This fact led to the ultimate demise of Napster as the legal
authorities tracked, and eventually shut down, the single entity that was respounsible for the
management of Napster.

The fall of Napster saw the emergence of several other systems such as Gnutella [43],
Freenet [21]*, Morpheus [82], and KaZaA [61]. Unlike Napster, Gnutella decentralizes the
initial resource discovery in addition to the file transfer, by using flooding to locate re-
sources [44]. Gnutella builds a network in which each machine is connected to a few other
machines in the network which are called its neighbors, i.e., each machine knows the IP
addresses of its neighbors and can communicate with them. A machine requests its neigh-
bors for a desired resource; these neighbors in turn ask their neighbors, and so on, until
the resource is found. No doubt, the motivation for this design was to make no single par-
ticipant indispensable, and thus make it impossible for any authority to control or censor
the network. From a technical standpoint however, this is not a scalable solution as it
creates an enormous volume of traffic in the network for each request [97]. In addition,
flooding creates a trade-off between overloading every machine in the network and cutting
off searches before completion. If the time-to-live on a message expires, a resource may not
be found even if it is only one hop away from the point of cut-off. So even if the resource
is actually present in the network, it may not be accessible if it is just out of reach of the
requesting peer.

Systems such as Morpheus and KaZaA alleviate the problem of flooding traffic somewhat

¥We discuss Freenet in further detail in Chapter 2.

in practice by using super-peers. Peers form local groups and elect a super-peer to
participate on their behalf in the network. All the resource requests are sent only to the
super-peers, each of which maintains an index of the resources hosted by its own group. If a
resource is not found in its own group, a super-peer will communicate with other super-peers
to locate the requested resource. Although it amends some of the problems of flooding, this
approach is still inherently unscalable. Flooding can be avoided, but with the additional

cost of maintaining synchronized, distributed indexes among the super-peers.

1.2.2 Contemporary systems

The first-generation commercial systems have spawned a lot of interesting research in the
academic community, the details of which are covered in Chapter 2. Here, we just give a
brief overview of some of the well-known systems to present a context for our contributions.

Several recent systems like CAN [95], Chord [112], Pastry [99], and Tapestry [125] use
a distributed hash table (DHT) as the basic data structure for a peer-to-peer system.
The main operation of a DHT is to retrieve the identity of a node that hosts a particular
resource, starting from any other node in the network. DHTs allow location of resources
using a directory-like interface that supports storing and fetching data indexed by keys.
The underlying theme of all these systems is that they build an overlay network on top
of the physical network, and embed the machines in the overlay network by hashing their
identifiers. Resource keys are distributed, either randomly or by hashing, among the nodes
to facilitate uniform load distribution. As both machines and resources are embedded in
the overlay network using hashing, these systems are called distributed hash tables. Each
node is responsible for the resources that hash to locations near itself. A node in the overlay
network can either store pointers to the addresses of the resources that it is responsible for,
or it may actually store the resources themselves, depending on the specific application.
Details of a common API which is being developed for such structured overlay networks
can be seen in [27].

The nodes are linked in the overlay network using a specific link distribution depending

on the design. Resource location, using the overlay network, is done in these various systems

8 A recent version of Gnutella also supports the use of super-peers.

by using different routing algorithms. Each node maintains some information about its
neighbors, and routing is done greedily by forwarding messages to the neighbor closest to
the target node. This inherent common structure leads to similar results for the performance
of such networks; with m nodes in the network, most of these systems use O(logm) space

at each node, and take O(logm) time for routing messages.

1.3 Model

Before we move on to our contributions in the next section, we briefly describe the model
used for the results. The interested reader is referred to the books by Lynch [77] and Attiya

and Welch [6] for further details of the model.

Environment: We use the term node to represent a process that is running on a par-
ticular machine. We assume a message-passing environment in which all processes com-
municate with each other by sending messages over a communication channel, where each
channel provides a bidirectional connection between two specified processes. An algorithm
in a message-passing system consists of a local program for each process in the system. This
local program provides the ability for the process to perform local computations, and to
send messages to and receive messages from each of its neighbors. Occurrences that can
take place in the system are modeled as events. There are two kinds of events: A com-
putation event which represents a computation performed locally by some process, and a
delivery event that represents the delivery of a message from one process to another. In a

system represented by this model, several events may occur concurrently.

Time and asynchrony: A system is said to be totally asynchronous if there is no fixed
upper bound on how long it takes for a message to be delivered, or how much time elapses
between consecutive steps of a process. In practical systems, however, we would like to
assume some upper bound on the message transmission delay so that failures in the system
can be detected. We assume that the system is partially synchronous, i.e., there is a
fixed upper bound (time-out) on the transmission delay of a message. We assume that each

message takes at most unit time to be delivered, and any internal processing at a machine

takes no time. We also assume that a message which has been sent will eventually get

delivered.

Failure model: Processes can crash, i.e., halt prematurely, and crashes are permanent.
We consider a failstop model where processes have some method for correctly detecting
whether another process has failed. As messages are always reliably delivered and there
is a fixed time-out on every message, a lack of response for a message is one way for the
failed processes to be identified, although it may be impossible to distinguish between
crashed processes and extremely slow ones. We do not account for byzantine failures
where a process remains in the system, but it behaves arbitrarily and sends faulty, possibly
malicious messages to other processes. We defer the issue of byzantine failures to future

work.

Complexity Measures: We are mainly interested in three performance measures for
our algorithms: (i) the total amount of time, (ii) the storage space at each process, and
(iii) the total number of messages for any algorithm. In a partially synchronous model, as
there is a fixed upper bound on the transmission delay of each message, the time taken
for an event is of little value. Also given the low cost of storage nowadays, we are not as
interested in minimizing the storage for each process as we are in keeping the number of
messages low. However, as the storage for each process will mainly consist of information
about its neighbors, the higher the number of neighbors, the greater will be the number
of messages sent as a part of the repair mechanism to fix any broken links to neighbors.
If each node periodically initiates actions to repair links to failed neighbors, it will create
a deluge of messages for the repair mechanism. Thus, in order to minimize the number
of messages, it would be beneficial to minimize the number of neighbors per process, and
in turn reduce the storage space per process. We concentrate on measuring the number of
messages for our algorithms, and the space used at each process to evaluate the performance
of our data structures. We note that there is a trade-off between storage requirements and
number of routing hops for a search query, and we try to maintain a balance between the

two parameters. We use the terms space, storage, and state interchangeably to denote the

storage space at each process to maintain information about the state of the system.

1.4 Our contributions

In joint work with James Aspnes and Zoé Diamadi [4], I considered the problem of designing
an overlay network and a routing mechanism that enables finding resources efficiently in
a peer-to-peer system. We argue that many existing approaches to this problem that use
DHTSs, can be modeled as the construction of a random graph embedded in a metric space
whose points represent resource identifiers, and the probability of a connection between
two points depends only on the distance between them in the metric space. We study the
performance of a peer-to-peer network where resources are embedded at grid points in a
simple metric space: a one-dimensional real line. We prove upper and lower bounds on the
message complexity of locating particular resources in such a network, under a variety of
assumptions about failures of either nodes or the connections between them. Our lower
bounds in particular show that the use of inverse power-law distributions in routing, as
suggested by Kleinberg [66], is close to optimal.

We propose an abstract model for a peer-to-peer network as follows: (1) embed resources
as points in a metric space, (2) construct an appropriate random graph on these points,
and (3) efficiently locate resources by greedy routing. We consider a simple one-dimensional
metric space with machines and resources embedded at grid points of a real line. Each
machine is embedded at a different point for every resource that it hosts. Thus, a single
machine may have multiple locations in the overlay network, depending on the number
of resources that it hosts. Each point in the metric space is connected to its immediate
neighbors and £ long-distance neighbors chosen with probability inversely proportional to
the distance between them.

Our main contributions are as follows:

e We prove that with n points in the metric space and £ € [1...logn| long-distance links
per point, routing takes O((log? n)/pf) time, if each point or link fails with probability
(1 — p) [Theorems 3.7 and 3.10].

10

e We prove that one-sided greedy routing, where the routing algorithm never traverses
a link past the target point, takes Q(log? n/£loglogn) time with any link distribution.
Similarly, with two-sided greedy routing, where the link closest to the target point

is taken, we get a lower bound of Q(log? n/¢?loglogn) [Theorem 3.3].

o We present some heuristics for constructing and maintaining the network dynamically,
and experimental evaluations that show that the heuristics give a resulting link distri-
bution that is very close to the optimal inverse power-law distribution with exponent 1

[Section 3.6].

e We also present some interesting experimental results on the number of routing hops
for a search operation using different routing strategies such as backtracking and

random rerouting [Section 3.7].

The underlying structure of DHTs resembles a balanced tree in which balancing de-
pends on the near-uniform distribution of the output of the hash function. Hashing the
machine identifiers uniformly distributes the machines in the metric space, and thus natu-
rally provides load balancing in the network. However, as the resource keys are also hashed,
DHTSs can provide only hash-table functionality i.e., they only support point queries or
exact match queries. Because hashing destroys the ordering on keys, DHT systems do not
support queries that seek near matches to a key or keys within a given range. Designing
a system that supports range queries had been posed as an open question by Harren et
al.[50]. DHT systems also destroy the property of spatial locality where related resources
are present near each other in the overlay network. So, having explored DHTSs, we modi-
fied our approach to exploit the underlying tree structure to give tree functionality, while
applying a simple distributed balancing scheme to preserve balance and distribute load.

In joint work with James Aspnes [5], I described a new model for a peer-to-peer network
based on a distributed data structure that we call a skip graph. Skip graphs are a novel
distributed data structure, based on skip lists [93], that provide the full functionality of a
balanced tree in a distributed system, where elements are stored in separate nodes that may
fail at any time. They are designed for use in searching peer-to-peer networks, and by pro-

viding the ability to perform queries based on key ordering, they improve on existing search

11

tools that provide only hash-table functionality. Unlike skip lists or other tree data struc-
tures, skip graphs are highly resilient, tolerating a large fraction of failed elements without
losing connectivity. In addition, constructing, inserting new elements into, searching a skip
graph and detecting and repairing errors in the data structure introduced by node failures
can be done using simple and straightforward algorithms.

Our main results are summarized as follows:

e We introduce a new distributed data structure called a skip graph for a peer-to-peer
network. We show that in a skip graph with n elements, searches, insertions, and

deletions take O(logn) time [Lemmas 4.2, 4.3 and 4.4].

e We prove that a skip graph with n elements has an expansion ratio of (1/logn) with
high probability, thus proving that it is resilient to adversarial failures [Theorem 4.10].
We also give experimental results to show that a skip graph performs well even in the

presence of random failures [Section 4.7.1].

e We give a repair mechanism that repairs any connected component of a defective skip

graph in the absence of new failures, inserts, and deletes [Theorem 4.22].

e We prove that the congestion at a particular element z in a skip graph is inversely
proportional to the number of elements between z and the target element to which the
message is sent, and that the distribution of this congestion decreases exponentially

beyond this point [Theorems 4.24 and 4.25].

1.5 Summary

The rest of this dissertation is structured as follows: Chapter 2 covers related research in
the area of peer-to-peer systems and other contemporary systems being used commercially.
The main technical results are in Chapters 3 and 4. In Chapter 3, we discuss the details
of the results on fault-tolerant routing in our abstract model of an overlay network as a
metric-space embedding. Most of the material in this chapter is adapted from [4]. Details
of skip graphs and their properties are given in Chapter 4, and much of this work appears

in [5]. Finally, we conclude with directions for future work in Chapter 5.

12

Chapter 2

Related Work

There has been a slew of research in the area of peer-to-peer systems in the last couple
of years. In this chapter, we summarize some of the well-known contemporary peer-to-
peer systems and related research, although this brief survey is by no means complete or
exhaustive. In particular, we do not cover the papers related to security in peer-to-peer

systems as they are beyond the scope and the focus of this dissertation.

2.1 First-generation systems

In Chapter 1, we discussed some of the first-generation peer-to-peer systems which we
mention here for the sake of completeness.

Napster [85] used a central server to index the resources in the system, and peers
used this index to locate files in the system. The actual file transfer was decentralized
and occurred between the peer that requested the resource and the peer that hosted it.
Gnutella [43] decentralizes the initial resource discovery as well by flooding the network with
a request. It works like a social network, where to get some piece of information, a person
will first ask her friends, and they will in turn ask their friends, and so on. KaZaA [61] and
Morpheus [82] ameliorate the problems of flooding by using super-peers, that participate in
the network on the behalf of smaller groups of end users, but they do not solve them in the
limit. Some rules of thumb for the design of super-peer networks, such as redundancy and

cluster size, have been formulated by Yang et al.[122] based on a study of the performance

13

of Gnutella.

FIRST-LEVEL
NEIGHBORS
1P4 A Tisz] CENTRAL
M ﬂ B |ipa| INDEX
4 . .
PEERS S z [ips \D SECOND-LEVEL
S | REQUESTING —~ NEIGHBORS

3 v |CENTRAL) PEER /l.
1P1 H-/' SERVER | .-/
> \ —- /' —

S / \ RESOURCES D_D
. i y

, """"" N | IP5 TRANSFER D D
\@ e

NAPSTER GNUTELLA
(Version 0.4)

KAZAA
MORPHEUS

Figure 2.1: First generation systems: Napster, Gnutella, KaZaA, and Morpheus.

Freenet: The main goal of Freenet [21] is to enable publishing, retrieving and replicating
documents while protecting the anonymity of both the publishers as well as the readers.
Each file is inserted into the network using a key which is a hash of its content. Every
node maintains a cache (not a persistent store) of the last few keys it has seen, and keeps
track of the node that it forwarded the request for a particular key to. A node compares
any incoming request to the entries in the cache, finds the closest matching key to it and
forwards the message to the corresponding node. Files are inserted and searched in the
same way, thus ensuring that the nodes cooperate to route requests to the most likely
physical location of the data. If a node fails to locate a resource, it returns the original
message downstream along the same path that it came from, and the request is forwarded
to the next best neighbor. We can think of the Gnutella search algorithm as a breadth-first
search as opposed to a depth-first search in Freenet. Routing is expected to improve over a
period of time because nodes will specialize in locating sets of similar keys as well as storing

clusters of files with similar keys. Thus, files will be dynamically replicated in locations

14

near requesters and deleted from locations where there is no interest. The performance of
Freenet is difficult to evaluate and it provides no provable guarantee on the search latency.

Another drawback is that it does not guarantee to find accessible content.

2.2 Before Distributed Hash Tables

The first-generation peer-to-peer systems inspired the development of more sophisticated
second-generation ones like CAN [95], Chord [112], Pastry [99], and Tapestry [125]. Al-
though these systems appear vastly different, there is a recurrent underlying theme: they
all use some variant of an overlay metric space in which the machines and resources are em-
bedded using hashing. As explained earlier, each machine can either maintain the addresses
of the resources that it is responsible for, or it can actually host the resources. Routing
is done greedily by forwarding packets to neighbors closest to the target node with respect
to the metric distance. This inherent common structure leads to similar results for the
performance of such networks. Before we explain DHTSs in detail, in this section, we look

at some of the precursors that led to their development.

2.2.1 Hashing

Hashing has been used earlier for several applications such as distributed databases [75, 70,
76] and distributed caching protocols [57, 3]. LH [75] is a hashing method used for extensible
disk files that grow or shrink dynamically, with no deterioration in space utilization or access
time. Files are organized into buckets on disk that can be accessed using a pair of hashing
functions h; and h;41. Function h; is linearly replaced by h;y1 as the bucket capacities are
exceeded, and few objects need to be transferred each time a new bucket is added. Records
can be located in a constant number of hops. LH* [76] generalizes LH to distributed disk
files without using a central coordinator and maintains an average load factor of 80% — 95%
for each bucket.

Consistent hashing was introduced by Karger et al.[57] for caching protocols that can be
used to relieve hot spots in distributed systems. Hot spots occur when a sudden increase

in the demand for a particular resource swamps the server that hosts it. To avoid hot

15

spots, the server evenly distributes the resources across the set of available caches such that
(i) the expected number of resource transfers when a cache leaves, is small, (ii) the users
get a mostly consistent view of all the caches as each resource hashes to a small set of
caches, and (iii) each cache is responsible only for its fair share of resources. This scheme
is similar to LH* but it allows buckets to be added in any arbitrary order. Consistent
hashing has been used by Akamai [3] for reliable, global, content delivery on the web. It is
also used as the core hashing algorithm in Chord [112] for load balancing and near-uniform
distribution of machine identifiers in the metric space to eliminate the need for balancing
the underlying tree structure. While the other DHT systems such as CAN [95], Pastry [99],
and Tapestry [125], do not specify the exact hash function to be used, they can also use

consistent hashing for mapping machines on to the overlay network.

2.2.2 Plaxton/Rajaraman/Richa [PRR] algorithm

Plaxton et al.[92] gave a distributed algorithm for accessing shared resources in an overlay
network, while using small-sized routing tables at each node in the network. This routing
algorithm is used in both Tapestry [125] and Pastry [99] with a few modifications. The
algorithm is based on suffix-based hypercube routing. Each node has a unique t-bit
identifier divided into r levels of w = t/r bits each; let w bits represent a digit. A node x
will have r sets of 2% neighbors each, such that each set i, 0 < 4 < r, will have nodes with
identifiers as follows: 4 common digits with z’s identifier, followed by all possible 2% values
for the (i + 1)st digit, and any of the 2 possible values for each of the remaining digits.
An example routing table is given in Table 2.1. Routing is done by greedily forwarding
the message to the node in the routing table, which has the longest common suffix with
the target identifier. For example, a message from 1234 to 3433 may be routed as follows:
1234 — 1213 — 2233 — 1433 — 3433.

Let b = 2. Then with m nodes in the network, the size of the routing table is (b —
1) - [log, m] and routing takes [log, m]| time. This was probably the first routing algorithm
introduced that was scalable for peer-to-peer systems. However, in the original scheme,
each resource was associated with a unique root node that maintained the address of the

resource. This is disadvantageous as it requires global knowledge to map resources to their

16

‘ Suffix Length ‘ Neighbors ‘

0 1131 | 3422 | 1213 -

1 3214 | 1224 - 3344
2 2134 - 4334 | 1434
3 - 2234 | 3234 | 4234

Table 2.1: An example of the routing table of node 1234 using the PRR routing scheme.
Heret =8,r =4,w = 2.

root nodes.

2.3 Distributed Hash Tables

In this section, we give a brief overview of the distributed hash table systems, highlighting

some of their major design aspects.

2.3.1 Content-addressable network

CAN [95] partitions a d-dimensional coordinate space into zones that are owned by nodes.
Resource keys are mapped to points in the coordinate space using a uniform hash function,
and then stored at the node which owns the zone in which the point is located. Each node
maintains an O(d) state about its neighbors which abut with the node only in one dimension.
Greedy routing, by forwarding messages to the neighbor closest to the target zone, takes
O(dm!/?) time with m nodes in the network. With d = logm, each node uses O(logm)
space and routing takes O(logm) time. Figure 2.2 shows an example of a two-dimensional
CAN with a route from zone 3 to zone 8 using greedy routing.

01 1, 1)

3 5 ZONE

d=2

(0,0 1, 0)

Figure 2.2: A two-dimensional content-addressable network (CAN).

17

To join the network, a new node picks a random point in the coordinate space, and
the existing node that owns the zone in which the point lies, splits the zone in half and
assigns one half to the new node. The dimension along which the split occurs is chosen in a
fixed round-robin fashion among all possible dimensions. Node failures are handled in the
same way by merging zones of failed neighbors. Various additional design improvements
include multiple coordinate spaces to improve data availability, better routing metrics such
as forwarding to the neighbor with the smallest round-trip latency, multiple peers per zone
and multiple hash functions for fault tolerance etc.

For proximity routing, a topologically-sensitive construction of the CAN was presented
in [96], which is similar to the ideas of Landmark Hierarchy of Tsuchiya [115] and Global
Network Positioning proposed by Ng et al.[86]. Each node in CAN measures its round-trip
delay to a set of pre-determined landmarks, and accordingly places itself in the coordinate
space. With ¢ such landmarks, ¢! orderings are possible, so the coordinate space is divided
into t! equal-sized portions, and each node will join the portion that matches its landmark
ordering. This method has two drawbacks: It is not self-organizing because of the need to
fix the landmarks, and it can cause a non-uniform distribution of nodes in the coordinate

space leading to hot spots.

2.3.2 Tapestry and Pastry

Tapestry [125] and Pastry [99] use the PRR algorithm [92] explained in Section 2.2.2 as
the core routing algorithm, with modifications to the other features of the design to make
it suitable for use in a distributed environment. To incorporate fault tolerance, Tapestry
maintains multiple neighbors per entry in the routing table to route around failures. It
eliminates the need for a central entity for mapping resources to root nodes, by assigning
a resource to the node whose identifier matches the hash value of the resource key in the
maximum number of trailing bits. Surrogate routing is used to locate a resource by also
storing it at a node closest to its chosen root node, if the latter is absent. There are many
more optimizations such as dynamic node addition and deletion, soft-state publishing and
supporting mobile resources, which are too involved to describe here, and the interested

reader is referred to [125].

18

o (e

Figure 2.3: Tapestry, based on the PRR routing algorithm. Routing from node 123 to node
368 is shown here. Pastry is a similar system that uses prefix-based routing.

Pastry uses prefix-based routing instead of suffix-based as in Tapestry. Each node
maintains a neighborhood set and a leaf set in addition to the routing table as per the
PRR algorithm. The neighborhood set of a node consists of a group of nodes that are
closest to it as per the proximity metric; they help the node to choose the closest nodes
that satisfy the routing table criteria. The leaf set L is the set of nodes with the |L|/2
numerically-closest larger identifiers, and the |L|/2 numerically-closest smaller identifiers
relative to the node’s own identifier. If the routing table node is not accessible, the current
node will forward the message to one of the leaf set nodes whose identifier prefix matches the
target in the same number of bits as the current node, but whose identifier is numerically
closer to that of the target. This procedure ensures that the routing always converges,
though not necessarily efficiently.

Both Pastry and Tapestry can exploit topology by proximity neighbor selection i.e.,
choosing the closest node (as per the proximity metric), out of all the possible neighbors
with appropriate matching identifiers. If the entire m? matrix with the latency or distance
values between all m nodes is available, then the best neighbor can easily be chosen to
support proximity routing; efficient heuristics can also be used for neighbor selection in the
absence of this matrix. From their experimental results, Pastry does particularly well with
paths that are only 30% — 40% longer than the ideal routes. However, both schemes weigh
progress in the identifier space versus the progress in the proximity space, thus making it

unclear if this is the best approach to achieve global proximity routing.

2.3.3 Chord

Chord [112] provides a hash-table functionality by mapping m machines (using consistent
hashing [57]) to identities of logm bits placed around a identifier circle. Each node = stores
a pointer to its immediate successor i.e., the closest node in the clockwise direction along
the circle. In addition, it also maintains a finger table with logm entries such that the
i-th entry stores the identity of the successor of 2 +2°~! on the identifier circle. An example
of these pointers is shown in Figure 2.4. Each resource is also mapped using hashing onto
the identifier circle and stored at the first node succeeding the location that it maps to.
Routing is done greedily to the farthest possible node in the routing table, and it is not
hard to see that this gives a total of O(logm) routing hops per search. Further, consistent

hashing ensures that no node is responsible for maintaining much more than its fair share

LIVE NODES SUCCESSOR
o 4
15 1
14

3 FINGER TABLE
POINTERS

of resources.

ABSENT o,
NODES

Figure 2.4: The finger table pointers for node 0 in Chord.

For fault tolerance, each node maintains a successor list which consists of the next
several successor nodes, instead of a single one. Theoretical results about the performance
of Chord in the presence of concurrent joins and involuntary departures can also be found

in [112].

Variants Some systems use consistent hashing like Chord for load balancing resources
across an active set of nodes; however they use different connections between nodes for
routing.

Kademlia [80] has the same design as Chord, except for the distance metric; it uses

the XOR value of the two node identifiers in the overlay network. Unlike Chord, this makes

20

the distance between any two nodes symmetric. An advantage of this network is that each
node can choose its neighbors from a range of possible choices, which makes the network
fault tolerant, and allows it to adapt to changes in the network conditions such as latency,
by choosing different nodes to route to.

Symphony [79] uses a probabilistic scheme for maintaining the links in a Chord-like
base system: The probability of a link between two nodes u and v is inversely proportional
to the distance between them. This scheme is similar to the one we explain in Chapter 3,
but unlike us, they do not give analytical results for fault tolerance.

Viceroy [78] maintains a constant-degree, logarithmic-diameter approximation to a
butterfly network for routing. It reduces the space per node to an expected O(1) links
by the clever use of butterfly routing in the last stages of a search operation. However,
improving the fault tolerance of such a network while maintaining the low storage is still
an open question.

Koorde [56] embeds a de Bruijn graph on the Chord identifier circle for routing. Each
node with a ¢-bit identifier b;b;_1 ... b; is connected to nodes with identifiers b;_1b;—s ...b10
and by 1b; o...b11. This gives a similar, constant-degree design like Viceroy but it is
relatively easier to construct and the fault tolerance can be improved by increasing the

degree to t.

2.4 Censorship-resistant networks

Some of the DHT systems are partly resilient to random node failures, but their perfor-
mance may be badly impaired by adversarial deletion of nodes. Fiat et al.[35] introduced
censorship-resistant networks which are resilient to adversarial deletion of a constant frac-
tion of the nodes*, such that most of the remaining live nodes can access most of the
remaining data items. With m nodes in the network, the network topology is based on a
butterfly network of depth (log m —loglog m), where each node represents a set of peers, and
each peer can be a member of multiple nodes. An expander graph is maintained between

any two connected nodes of the network as shown in Figure 2.5.

*The paper describes a network that is robust up to deletion of half the nodes, but it can be generalized
to any arbitrary fraction of deleted nodes.

21

EXPANDER BUTTERFLY
GRAPH NETWORK

log m — loglogm

Figure 2.5: Censorship-resistant network: butterfly network of depth log m — loglog m with
expander graphs between nodes.

Multiple copies of the data items are stored in the nodes in the bottom-most level and
searches are run in parallel for any copy of a data item. Each search takes O(logm) time,
O(log? m) messages and O(logm) storage per node. The authors also give a spam-resistant
variant of this scheme which requires additional storage space and messages, where the
adversary can take control of up to half of the nodes, and yet be unable to generate false
data items. The main drawback of this design is that it can survive only a static attack, and
cannot be dynamically maintained as more nodes join the network. Some extensions of this
result for dynamic maintenance can be seen in [102] and [28]. However, the construction of
such networks is very complex, and it is still an open question to dynamically maintain such
a network when the size changes by an order of magnitude to need a new level of butterfly
linkage. A simpler design of a DHT which is provably fault-tolerant to random faults was

recently given by Naor et al.[84].

2.5 Other systems

There are some other peer-to-peer systems that either eliminate namespace virtualization,
or use hybrid systems which have a less rigid structure compared to DHTs, but provide
better search efficiency compared to the first-generation systems such as Gnutella. We

explore some of these designs in this sections.

22

2.5.1 Non-virtualized systems

TerraDir: TerraDir [109, 14, 62] is a recent system that provides a directory lookup for
hierarchical namespaces, such as DNS names or Unix file system names, as opposed to the
flat namespaces in DHTs. Caching and replication are heavily used for both fault tolerance
and reduction of query latencies. Nodes at height 7 in the hierarchical namespace tree are
replicated O(4) times, so that the root is replicated O(logm) times (with m nodes in the
network), while the leaves have just one replica. Each node is replicated randomly at other
nodes, and each parent maintains information about all the replicas of each of its children.
Routing is performed by going “up” in the tree until the longest common prefix of the
source and destination is reached, and then going “down” until the destination is reached.

For example, as shown in Figure 2.6, a search from /J/D/A to /J/D/F goes up till /J/D and

FON
//@?\@
ORGIONC

Figure 2.6: Routing in TerraDir from /J/D/A to /J/D/F.

then down to the destination.

Each node also calculates the distance to the target from all the possible replicas that
it maintains and chooses the closest, live one to improve routing. As the namespace is not
virtualized, spatial locality is maintained, which supports non-point queries such as /J/*.
But this support is only partial because if a request is serviced from some replica and not the
original node, then it may be possible that the address for the next data item is not known.
Further, there are as yet no provable guarantees on load balancing and fault tolerance for

this network.

Distributed trie: Freedman et al.[38] use a distributed trie [29, 36, 68] to support non-
point queries; the keys are maintained in a trie which is distributed among the peers de-
pending on their access locality. Updates are done lazily by piggybacking information on

query traffic. This algorithm reduces the message traffic compared to flooding but can

23

degenerate to a broadcast for all nodes with stale views of the network.

SkipNet: SkipNet is another non-virtualized system, very similar in spirit to skip graphs
that we describe in Chapter 4, which was developed independently by Harvey et al.[51]. We

elaborate on the difference between the two systems in Section 4.4.

2.5.2 Hybrid systems

Yappers: Yappers [42] has an unstructured network like Gnutella but introduces hashing
for storing keys. Each machine z is assigned one of b colors based on its IP address: color(z)
= hash(IP(z)) mod b. Each node maintains information about an immediate neighborhood
which comprises of all nodes within a constant number of routing hops from itself. Resources
are stored at nodes whose color matches the hash value of the resource key, so searches are
only forwarded to nodes of the same color. While this improves the performance of the

Gnutella search, it does not give any provable guarantees on routing time or load balancing.

Kelips*: Kelips* [48] is a hybrid system between a DHT and a super-peer network, where
m nodes are clustered into O(y/m) affinity groups using hashing. Each node resembles a
super-peer by maintaining information about all the nodes and resources in its own group,
and one contact from every other group. Space requirement per node is O(y/m) and routing
takes O(1) time. Updated network information is propagated using gossip protocols given
by Kempe et al.[63]. For larger peer-to-peer systems, the space and maintenance costs are

prohibitively high, and routing may fail due to stale routing tables.

2.6 Improved features

So far we have seen designs of peer-to-peer systems as a whole but research has also been
done on specific features of these systems such as improved search techniques and load

balancing.

24

2.6.1 Search techniques

Intelligent flooding: In [121], the authors propose three different search techniques for
Gnutella instead of naive flooding on the network: (i) Iterative deepening where multiple
bread-first searches are initiated with successively larger depth limits, (ii) Directed BFS
where the breadth-first search includes only those neighbors which have performed well in
the past, and (iii) Maintaining local indezes at each node about all the other nodes within
a certain fixed radius to process the query on the behalf of all nodes within that radius.
A technique similar to (iii) i.e., maintaining routing indices which take into account
information about near neighbors and the number of routing hops to reach them, can be
seen in [25]. While these schemes perform much better than the basic flooding technique of
Gnutella, they are not very applicable to more sophisticated systems that eliminate flooding

altogether.

Indexing: Harren et al.[50] describe a special indexing scheme, first introduced in Wit-
ten et al.[119], for pseudo-keyword searching in DHTs. Each key I is split into “t-grams”:
distinct ¢-length substrings, and an index of the form (g;, I, address) is maintained for each
t-gram gy. A search for a resource is also done using the same #-grams, and only those
resources which match more than a specified number of ¢-grams are returned. This helps
to find resources with similar names but still does not support more complex queries such

as range queries and near matches to a key.

Bloom filters: In YouSearch [55, 12], a peer-to-peer system for publishing web doc-
uments, each peer uses a bloom filter [15] to create a precise summary of the documents
it stores. These bloom filters are periodically exchanged between peers to update content
information. Like the earlier scheme, this one also does not support complex queries, and
may additionally suffer from the problem of false positives i.e., it may appear that a peer

stores some resource even though it does not.

Locality-sensitive hashing: Gupta et al.[47] use locality-sensitive hashing [74, 53] to

support answering approximate queries. Their system design substitutes consistent hashing

25

in Chord with locality-sensitive hashing, so that items that are close together in the original
space are located close to each other in the hashed space as well. A query for some data
item will produce a result that is similar to the requested item. This network not only
sacrifices load balancing by using a different hash function but it also does not support
answering complex queries ezactly.

The feasibility of peer-to-peer web indexing and searching is considered in [73]. Each
web document is described using a set of keywords and the responsibility for keywords is
uniformly distributed among participant peers. Each peer maintains posting lists of the
addresses of the documents that contain the keywords that it is responsible for. Enhance-
ments to reduce query bandwidth include caching results, pre-computation of posting list
intersection for multiple-word queries, bloom filters etc. The authors conclude that while
these enhancements are promising, further compromises in result quality and changes in
peer-to-peer network structure will be required to make the problem feasible for practical

systems.

2.6.2 Load balancing

Even with the use of consistent hashing, a system like Chord could have an imbalance in
the load distribution if there is a single peer that is responsible for a large segment of the
identifier circle. One solution given in the Chord design is the use of virtual peers where
each machine is assigned multiple segments to give better load balancing. This increases
the space requirement at each node and still does not guarantee perfect load balancing. We

look at some of the alternative schemes that have been proposed for better load balancing.

Power of two: Byers et al.[17] propose using “the power of two” paradigm for load
balancing, where each data item chooses d > 2 hash functions to determine d candidate
nodes on the identifier circle. Prior to insertion, the load on each of those nodes is compared
and the data item is inserted at the node with the minimum load. With high probability,
this ensures that the maximum load at any of the m nodes with m resources, is at most
loglogm/logd+0O(1). To avoid the extra burden of querying all these possible peers during

a search, each of the d initially-chosen peers can store a pointer to the location where the

26

data item is eventually stored.

Sloppy hashing: Coral [37] is yet another variant of Chord that uses “sloppy hashing”
for storing data items that may have multiple addresses. Each node maintains a fixed buffer
size for storage of the (key, address) pairs. When a new pair has to be inserted but the
corresponding node is full, the pair is stored at a node one hop away from the original
target towards the requesting peer. In addition, Coral tries to maintain clusters of nodes
for optimizing network locality: each node is a part of several layers of distributed hash
tables each of which consists of other nodes progressively further away from itself in the
physical network. Although the sloppy hashing along with cluster management provides
limited load balancing, it is not applicable in systems which have one or few copies of each
resource because the spilling over technique will not be very effective. In addition, it is

expensive to maintain several DHTs for cluster management.

Load transfer: Rao et al.[94] explore three different schemes to periodically transfer load
between virtual peers: (i) Choose two peers at random and initiate a transfer if one is more
overloaded than the other; (ii) Allow an overloaded peers to choose the best of several
available under-loaded peers to shed it load; and (iii) Allow several overloaded and under-
loaded peers to mutually transfer load among each other. Their simulation results show

that it is possible to balance the load within 95% of the optimal value with these schemes.

2.7 Applications

In this section, we give a brief overview of different applications that have been proposed
and/or implemented using peer-to-peer systems. We have purposely left out implementation
details in this section as the main purpose is to give the reader an idea of the variety of

applications that are being built using peer-to-peer systems, rather than the specific details.

2.7.1 Publishing systems

Peer-to-peer systems have been widely used for data storage systems. Oceanstore [69]

provides a global-scale, persistent data store in which routing to locate files is done using

27

Tapestry [125], which is described in Section 2.3.2. Publius [118] is a censorship-resistant
web-publishing system that uses hashing to distribute shares of the encryption key to dif-
ferent peers. Tangler [117] is similar to Publius except that it uses a Chord-like base
system to distribute actual file data blocks, not just the encryption keys. CFS [26] and
PAST [100, 98] are other data storage systems based on Chord and Pastry respectively.
Mnemosyne [49] is a peer-to-peer steganographic storage service based on Tapestry,
where files can be stored such that attackers are unable to obtain their contents, but a
legitimate user can access them. FEach file block is encrypted and written to a randomly
chosen location with additional replication to avoid overwriting blocks. Further enhance-
ments to provide fault tolerance include encoding information into ¢ blocks such that any

s < t blocks are sufficient to retrieve it.

2.7.2 Web publishing and caching

YouServ [55] is a web-publishing system that allows users to collectively use their local
machines for web hosting and file serving. Peers are responsible for storing and replicating
content, and a coordinator is used to direct queries to the peer that hosts a particular page.
Support for hosting web pages for a peer that is currently inaccessible, at other peers makes
the content available most of the time.

Squirrel [54] is a decentralized, peer-to-peer web cache developed on top of Pastry [99].
The system pools together local caches of peers to form a global, scalable web cache without
the associated overheads such as hardware and maintenance costs. Experimental results
show that developing such a system is not only feasible but also compares favorably to a

dedicated web server.

2.7.3 Name services

Simple Distributed Security Infrastructure (SDSI) is a proposed public-key infras-
tructure in which names are defined in local namespaces and longer names can link mul-
tiple namespaces to delegate trust using certificates. ConChord [2] is a distributed SDSI
certificate directory built on Chord, for name resolution over multiple namespaces, and

membership checking to see if a certificate is applicable to a particular key.

28

DHash [24] is a system that uses Chord as an alternative service structure to the DNS;
(host name, address) pairs are stored in a distributed fashion using hashing, to alleviate
some of the drawbacks of using tree data structures for DNS lookups. The authors conclude
that in spite of the advantages of a distributed DNS, the high latencies, difficulties in adding
new features at all clients, and the lack of incentives to serve unrelated data make the system
less attractive than the current DNS. A similar conclusion for using peer-to-peer systems
for name services can be seen in Overlook [113] where the authors say that such systems are
too sensitive to the transport layer and the client machines. A different perspective that
focuses on the advantage of semantic-free reference routing by using peer-to-peer for DNS

can be seen in [10].

2.7.4 Network performance measurement

Srinivasan et al.[110] suggest using a peer-to-peer system for measurement of network per-
formance in M-coop. With peers distributed all over the world, such a system would give
good a good level of network coverage that would be difficult to achieve by manually select-
ing endpoints. However, there are several issues such as sufficient participation, usefulness of
measurements, and handling collusions which remain to be addressed before implementing

such a system in practice.

2.7.5 Managing flash crowds

CoopNet [89] and Backslash [111] are systems that address the flash crowd problem,
due to a sudden increase in the demand for some data, by proposing that clients that
have downloaded the data, serve it to other clients. This is implemented by having the
server maintain a list of served clients and redirecting future requests to them. To prevent
redirection overload on the server, Backslash further stores resource addresses, either en

route to the requesting node in a DHT overlay, or on random peers using hashing.

2.7.6 Group communication

Pastry has been used as the base for Scribe [101], an event-notification infrastructure for

a topic-based publish/subscribe system. Subscribers register for a topic of their interest

29

and receive events related to that topic irrespective of the publisher. A multicast tree is
maintained for each topic which is associated with a rendez-vous point i.e., the point in
the overlay network that is closest to the topic identifier. Each tree is formed by joining
the routes from the subscribers for that particular topic.

Peer-to-peer systems are also used for application-level broadcast [32] as well as mul-
ticast [95, 19, 18]. There are two approaches for multicast: intelligent flooding used in
M-CAN [96] based on CAN [95], and building a multicast tree as in Scribe [19] and Split-
Stream [18], both based on Pastry [99]. A comparison of the performance of the two
approaches under identical workloads [20] shows that the tree approach outperforms the

flooding approach.

30

Chapter 3

Fault-tolerant Routing

In this chapter, we present an abstract model of a distributed hash table, prove our re-
sults for fault-tolerant greedy routing in this model, give heuristics for construction and
maintenance of such a network, and present experimental results on the performance in

practice.

3.1 Overview

Although the various peer-to-peer systems that use distributed hash tables (see Chapter 2
for details) seem vastly different, there is a recurrent underlying theme in the use of some
variant of an overlay metric space in which the machines are embedded. The locations of
machines and resources in this metric space are determined by their identifiers and keys
respectively. Each node maintains some information about its neighbors in the metric
space, and routing is then simply done by forwarding each packet to the neighbor closest
to the target node with respect to the metric. In CAN [95], the metric space is explicitly
defined as the coordinate space which is divided into zones and the distance metric used
is simply the Euclidean distance. In Chord [112], the nodes are located on grid points
on a real circle, with distances measured clockwise along the circumference of the circle.
Tapestry [125], and Pastry [99] also place nodes on a real circle although distances can be
measured in either direction. This inherent common structure leads to similar results for

the performance of such networks. In this chapter, we explain why most of these systems

31

achieve similar performance guarantees by describing a general setting for such overlay
metric spaces, although most of our results apply only in one-dimensional spaces.

Further, we are interested in the fault-tolerance properties of such networks. For large
systems, where nodes appear and leave frequently, resilience to repeated and concurrent
failures is a desirable and important property. We prove that with our overlay space and
linking strategies, the network performs reasonably well even with a large number of failures.
We also give experimental results that support our theoretical proofs in practice.

Our approach too provides a hash table-like functionality, based on keys that uniquely
identify the resources. To accomplish this, we map resources to points in a metric space
either directly from their keys or from the keys’ hash values. This mapping dictates an
assignment of machines to metric-space points. Each machine is assigned a separate location
for each resource that it hosts; so a machine can be located at multiple points in the overlay
network. We construct and maintain a random graph linking these points and use greedy
routing to traverse its edges to find data items. The principle we rely on is that failures leave
behind yet another (smaller) random graph, ensuring that the network is robust even in the
face of considerable damage. Another compelling advantage of random graphs is that they
eliminate the need for global coordination. Thus, we get a fully-distributed, egalitarian,
scalable network with no bottlenecks.

We measure performance in terms of the number of messages sent in the network for a
search or an insert operation. The repair mechanism may generate additional traffic, but
we expect to amortize these costs over the search and insert operations. Given the growing
storage capacity of machines, we are less concerned with minimizing the storage at each
node; the space requirements are small and the information stored at a node consists only
of an IP address for each neighbor. However, as pointed out in Chapter 1, more neighbors
lead to an increase in traffic for maintenance of links in the repair mechanism, thus it is
beneficial to keep the storage requirement down to a minimum.

The rest of this chapter is organized as follows. Section 3.2 explains our abstract model
in detail. We give our lower bounds for greedy routing in Section 3.3. We prove upper
bounds on greedy routing without failures in Section 3.4, and in the presence of failures

in Section 3.5. In Section 3.6, we present a heuristic method for constructing the random

32

graph and provide experimental results that show its performance in practice. Section 3.7
describes the results of other experiments we conducted to test the performance of greedy
routing in our distributed data structure. Conclusions and future work are discussed in

Section 3.8.

3.2 Our approach

The idea underlying our approach consists of three basic parts: (1) embed resources as points
in a metric space, (2) construct a random graph by appropriately linking these points, and
(3) efficiently locate resources by routing greedily along the edges of the graph. Let R be
a set of resources spread over a large, heterogeneous network X. For each resource r € R,
owner(r) denotes the machine in X that provides r and key(r) denotes the resource’s key.
Let K be the set of all possible keys. We assume a hash function A : K — V such that
resource r maps to the point v = h(key(r)) in a metric space (V,d), where V is the point
set and d is the distance metric as shown in Figure 3.1. We can use a hash function such as
SHA-1 [1] to populate the metric space uniformly. Note that via this resource embedding, a
machine z is mapped onto the set V, = {v € V : Ir € R, v = h(key(r)) A (owner(r) = z)},
namely the set of metric-space points assigned to the resources the machine provides. Thus
a single machine can have multiple locations in the metric space, one location for each
resource that it hosts*.

Our next step is to construct a directed random graph from the points embedded in V.
We assume that each newly-arrived machine z is initially connected to some other machine
in X. Each machine z generates the outgoing links for each vertex v € V, independently.
We give details about the number of outgoing links in our model in later sections. A
link (v,u) € V, x V, simply denotes that knows that y is the machine that provides
the resource mapped to u; hence, we can view the graph as a virtual overlay network of
information, pieces of which are stored locally at each machine. Machine = constructs each
link by executing the search algorithm to locate the end-point of that link. If the metric

space is not populated densely enough, the choice of an end-point may result in a vertex

*We note that if there are multiple owners for a resource that has the same key but exists on several
machines, they all hash to the same location but each owner creates its own independent links.

33

Dee | VIRTUAL
Lol ROUTE

PHY SICAL
LINKS

S
HASH
AR%I—UUTAEL vl v2 v3v4 / N
PHY SICAL NETWORK VIRTUAL OVERLAY |-~
(RESOURCEYS) NETWORK

Figure 3.1: An abstract model of a distributed hash table.

corresponding to an absent resource. In that case, x chooses as its neighbor, the point
present closest to the original end-point. Moving to nearby vertices will introduce some
bias in the link distribution, but the magnitude of error does not appear to be large, as
shown in a more detailed description of the graph construction given in Section 3.6.

Having constructed the overlay network of information, we can now use it for resource
location. As new machines arrive, old machines depart, and existing ones alter the set of
resources they provide or even crash, the resources available in the system change. At any
time ¢, let R* C R be the set of available resources and I be the corresponding overlay
network. A request by machine x to locate resource r at time ¢ is served in a simple, localized
manner: z calculates the metric-space point v that corresponds to r, and a request message
is then routed over I'* to v from the vertex in V,, that is closest to v!. Each machine needs
only local information, namely its set of neighbors in I, to participate in the resource
location. Routing is done greedily by forwarding the message to the machine mapped to
a metric-space point as close to v as possible. The problem of resource location is thus
translated into routing on random graphs embedded in a metric space.

To a first approximation, our approach is similar to the “small-world” routing work by
Kleinberg [66], in which points in a two-dimensional grid are connected by links drawn from
a normalized power-law distribution (with exponent 2), and routing is done by having each

node forward each packet to the neighbor closest to the packet’s destination. Kleinberg’s

tNote that since R’ generally changes with time, and may specifically change while the request is being
served, the request message may be routed over a series of different overlay networks I*t, I*2, ..., I'*,

34

approach is somewhat brittle because it assumes a constant number of links leaving each
node. Getting good performance using his technique also depends on having a complete
two-dimensional grid of points. We are not as interested in keeping the degree down and
accept a larger degree to get more robustness. Also, we cannot assume a complete grid,
because fault tolerance is one of our main objectives, and since machines are mapped to
points in the metric space based on what resources they provide, there may be missing
points.

The use of random graphs is partly motivated by a desire to keep the data structure
scalable and the routing algorithm as decentralized as possible, as random graphs can be
constructed locally without global coordination. Another important reason is that random
graphs are by nature robust against failures: a node-induced subgraph of a random graph
is generally still a random graph; therefore, the disappearance of a few vertices, along with
all their incident links (due to failure of some machines implementing the data structure)
will still allow routing while the repair mechanism is trying to heal the damage. The repair
mechanism also benefits from the use of random graphs, since most random structures
require less work to maintain their much weaker invariants compared to more organized
data structures.

Embedding the graph in a metric space has the very important property that the only
information needed to locate a resource is the location of its corresponding metric-space
point. That location is permanent, both in the sense of being unaffected by disruption of
the data structure, and easily computable by any node that seeks the resource. So, while
the pattern of links between nodes may be damaged or destroyed by failure of nodes or of
the underlying communication system, the metric space forms an invulnerable foundation

over which to build the ephemeral parts of the data structure.

3.2.1 Comparison with DHT's

Our approach is essentially an abstract model of a DHT with a few modifications. DHTs
use machine identifiers and resource keys to determine the locations of the machines and
resources respectively in the overlay metric space. Each machine is responsible for some

subset of the resources and either maintains the addresses of the other machines that host

35

these resources, or maintains the resources themselves; typically this subset consists of
resources that are located near the machine’s location in the metric space.

While our model is similar to the DHTSs, it is resource-centric compared to the machine-
centric approach of the DHTs. As in DHTSs, we propose the use of a metric space as an
overlay network and embed machines and resources in this overlay network. However, our
approach differs in the way this embedding is actually done. We propose that each machine
z in the network has multiple locations V,, in the metric space, one for each resource that it
hosts. Thus each vertex v € V, represents one resource hosted by machine x. This implies
that x has to maintain links as per the chosen link distribution for each of its resources; if
x has k resources and each vertex in the metric space has £ links, z has to maintain (k¢)
links.

Our approach gives the benefit of content locality i.e., each machine is responsible
for the addresses of the resources that it hosts, which increases manageability and security.
No machine needs to place its trust in some other machine to maintain the address of its
resources. Another small advantage is that since the resource address is served by the
same machine that hosts the resource, no extra communication is required to start the
resource transfer after its location has been determined. At the same time, it presents
certain difficulties. Each machine has to maintain a large number of links; while this is not
an issue in terms of space at each machine as each link is nothing but the IP address of
another machine in the system, it can result in a lot of overhead for maintenance as a part
of the repair mechanism. If each node periodically checks the status of its neighbors and
initiates actions to repair links to faulty neighbors, it can cause a flood of messages given
the large number of neighbors per node. In addition, load balancing may be skewed because
if a few machines own most of the resources, they will be responsible for an unusually large
part of the network maintenance.

On the other hand, DHTs naturally provide load balancing and minimize the number
of links per machine. However, they do not provide content locality, and thus inherently
assume that all the peers selflessly maintain the addresses of the resources, or the resources
themselves, even though they are actually provided by other machines in the system.

We note that we can easily adopt the load balancing properties of DHTSs in our design.

36

Instead of multiple locations for a machine as per its resources, it can have a single location
based on the hash value of its identifier. Similar to DHTSs, we can also hash the resource
keys to determine which machine will be responsible for the resources. Each machine
will maintain information about the resources that hash to the same location (or nearby
locations) as itself. This gives the natural load balancing properties as well as minimization
of space at each machine that are key features of a DHT. But it also leads to the loss of the
important property of content locality. Depending on the application that the peer-to-peer
system is used for, and depending on whether security or load balancing is more important,
one of the two approaches can be suitably used.

In the sections that follow, we present our results which can be applied to both scenarios
as we refer to the number of points in the overlay metric space for our results. We do not
commit to how the resources are distributed, so a point in the metric space can correspond
either to a machine or a resource. Note that when we say node, we actually refer to a vertex

in the virtual overlay network, not a physical machine in the network.

3.2.2 Tool

Some of our upper bounds will be proved using a well-known upper bound of Karp et
al.[60] on probabilistic recurrence relations. We will restate this bound as Lemma 3.1, and
then show how a similar technique can be used to get lower bounds with some additional

conditions in Theorem 3.3.

Lemma 3.1 ([60]) The time T(Xy) needed for a non-increasing real-valued Markov chain

Xo,X1,X0,X3... to drop to 1 is bounded by

T(X,) < /1 ~dz, (3.1)

when p, = E[X; — X1 : Xy = 2] is a nondecreasing function of z.

This bound has a nice physical interpretation. If it takes one second to jump down p,
meters from z, then we are traveling at a rate of y, meters per second during that interval.

When we move past some position z, we are traveling at the average speed u, determined

37

by our starting point £ > z for the interval. Since p is nondecreasing, using p, as our
estimated speed underestimates our actual speed when passing z. The integral computes
the time to get all the way to zero if we use u, as our instantaneous speed when passing
position z. Since our estimate of our speed is low (on average), our estimate of our time

will be high, giving an upper bound on the actual expected time.

3.3 Lower bounds

In this section, we present our lower bounds on routing. We consider greedy routing in a
graph embedded in a line where each node is connected to its immediate neighbors and
to multiple long-distance neighbors chosen according to a fixed link distribution. We give
lower bounds for greedy routing for any link distribution satisfying certain properties (The-
orem 3.3). We only give a brief intuition of the proof here as the bulk of the work was done
by the co-author and the details are beyond the scope of this dissertation.

We would like to get lower bounds on the process described in Lemma, 3.1, in addition to
upper bounds, and we will not necessarily be able to guarantee that p,, is a nondecreasing
function of z. But we will still use the same basic intuition: The average speed at which we
pass z is at most the maximum average speed of any jump that takes us past z. We can
find this maximum speed by taking the maximum over all x > z; unfortunately, this may
give us too large an estimate. Instead, we choose a threshold U for “short” jumps, compute
the maximum speed of short jumps of at most U for all z between z and z + U, and handle
the (hopefully rare) long jumps of more than U by conditioning against them. Subject to
this conditioning, we can define an upper bound m, on the average speed passing z, and
use essentially the same integral as in (3.1) to get a lower bound on the time.

We now give a lower bound on the expected time taken by greedy routing on a random
graph embedded in a line. Each node in the graph has expected out-degree at most £ and is
also connected to its immediate neighbor on either side. With n nodes in the metric space,
we consider two variants of the greedy routing algorithm and derive lower bounds for them
equal to Q(log® n/(¢? loglogn)) and to Q(log? n/(¢loglogn)), as stated in Theorem 3.3. For

large values of /, a lower bound of Q(ll%gg—Z) on the worst-case routing time can be derived

38

very simply, as follows.

Lemma 3.2 Let £ € (logn,n¢], 0 < ¢ < 1. Then for any link distribution and any routing

strategy, the number of routing hops per search, with n nodes is T = Q(

Proof: With / links for each node, we can reach at most #¥ nodes at step k. Assuming

that the minimum time to reach all n nodes is T, /I = n. This gives a lower bound of

Q(ll%i—g) onT. 1

For constant values of £, the lower bound is Q(log®n/ loglogn), which is substantially
higher than the time O(logn) that can be obtained by building a tree (which requires
dependence in the distribution on links). Thus the lower bound shows some of the costs
inherent of assuming independence and symmetry between all nodes in the graph. The
cost of symmetry is reduced, however, for larger £: with £ = Q(logn), only loglogn factors
separate the costs of symmetric and asymmetric solutions.

We consider two variants of the greedy routing algorithm. Without loss of generality,
we assume that the target of the search is labeled 0f. In one-sided greedy routing, the
algorithm never traverses a link that would take it past its target. So if the algorithm is
currently at v (v < 0) and is trying to reach 0, it will move to the node v — A; with the
smallest non-positive label. (A similar action is taken for v > 0.) In two-sided greedy
routing, the algorithm chooses a link that minimizes the distance to the target, without
regard to which side of the target the other end of the link is. In this case, the algorithm
will move to a node v — A; whose label has the smallest absolute value, with ties broken
arbitrarily. One-sided greedy routing can be thought of as modeling algorithms on a graph
with a boundary when the target lies on the boundary, or algorithms where all links point
in only one direction (as in Chord [112]).

Our results are stronger for the one-sided case than for the two-sided case. With one-
sided greedy routing, we show a lower bound of Q(log? n/(£loglogn)) on the time to reach
0 from a point chosen uniformly from the range 1 to n that applies to any link distribu-

tion. For two-sided routing, we show a lower bound of Q(log?n/(¢21loglogn)), with some

We assume that nodes are labeled by integers and identify each node with its label.

39

TARGET

— TWO-SIDED ROUTING
---= ONE-SIDED ROUTING

SOURCE ¢

Figure 3.2: Different links are chosen when going from the source node towards the target
node, depending on whether the greedy routing used is one-sided or two-sided.
constraints on the distribution. We conjecture that these constraints are unnecessary, and

that Q(log? n/(£loglogn)) is the correct lower bound for both models.

Theorem 3.3 Let G be a random graph whose nodes are labeled by the integers. Let A,
for each v be a set of integer offsets chosen independently from some common distribution,
subject to the constraint that —1 and +1 are present in every A,, and let node v have an
outgoing link to v — 0§ for each § € A,. Let £ = E[|A|]. Consider a greedy routing trajectory
in G starting at a point chosen uniformly from 1...n and ending at 0.

With one-sided routing, the expected time to reach 0 is

log?n
Q——1. 3.2
(ﬁlog logn> (32)
With two-sided routing, the expected time to reach 0 s
log?n
Q —— 3.3
(KQ loglogn) ’ (3:3)

provided A is generated by including each § in A with probability ps, where (a) p is unimodal,
(b) p is symmetric about 0, and (c) the choices to include particular 6,8 are pairwise

independent.

We also believe that the bound continues to hold in higher dimensions than 1 but a
simple extension of the proof of Theorem 3.3 is not sufficient to prove the same. This lower
bound explains why most of the DHT systems give similar performance with O(logn) links

per node using greedy routing$.

$Viceroy [78] is an exception that reduces the space cost to O(1) by the clever use of butterfly routing in
the last stages of the search.

40

3.4 Upper bounds without failures

In this section, we present upper bounds on the number of routing hops for a search opera-
tion in a simple metric space: a one-dimensional real line. To simplify theoretical analysis,

the network is set up as follows:

e Nodes are located at grid points on the real line. Each node v is connected to its
nearest neighbor on either side, and to £ long-distance neighbors. Let n be the number

of nodes.

e With £ € [1,1logn], the long-distance neighbors are chosen as per the inverse power-
law distribution with exponent 1, i.e., each long-distance neighbor u is chosen with

probability inversely proportional to the distance between v and u. Formally,

1/d(v,u)
D wze 1/d(v,u)’

Pr[u is a neighbor of v] =

where d(v,u) is the distance between nodes v and u in the metric space. With £ €
(logm,n¢], 0 < ¢ < 1, we use a deterministic linking strategy which is explained in

detail later in this section.

e Routing is done greedily by forwarding the message to the neighbor closest to the

target node.

We analyze the performance for the cases of a single long-distance link and of multiple
links, in a failure-free network in this section, and in a network with link and node failures

in the next section.

3.4.1 Single long-distance link

We first analyze the number of routing hops for a search in an idealized model with no
failures and with one long-distance link per node. Kleinberg [66] proved that with n?
nodes embedded at grid points in a d-dimensional grid, with each node v connected to its
immediate neighbors and one long-distance neighbor u chosen with probability proportional

to 1/d(v,u)?, any message can be delivered in time polynomial in log n using greedy routing.

41

While this result can be directly applied to our model with n nodes, d = 1, and £ = 1 to
give O(log2 n) routing hops per search, we get a much simpler proof using Lemma 3.1. We

include the proof below for completeness.

Theorem 3.4 Let each node be connected to its immediate neighbors (at distance 1) and 1
long-distance neighbor chosen with probability inversely proportional to its distance from the

node. Then the expected number of routing hops per search, with n nodes is T'(n) = O(H2).

Proof: Let u; be the expected number of nodes crossed when the message is at a node

s that is at a distance k from the destination ¢. Clearly, uj is non-decreasing.

—k 0 k

* e
n S t YD)

Figure 3.3: All the possible nodes that can be reached from the source node s en route to
the destination node t.

From Figure 3.3, we see that the routing algorithm traverses the long-distance link from s
if it ends in (—k, k); otherwise the short-hop link to the immediate neighbor closer to the

destination ¢ is taken. Thus we get:

E o1 . k-1 1 . —k1 +k 1
Doimig doic1 ol i 71 Z?ﬁ%?'l

. 2
bh="g t— g t— g tT g —
where
ni—k 1 no+k 1
S = - -
2 it
=1 =1
= Hn17k + Hn2+k:
< 2H,
Then
1 k k
U > E[k‘ +0+ Hnl—k + an—Hc — HQk] > § > 2,

42

Clearly, uy is non-decreasing, and thus using Lemma 3.1, we get

T(n) < Zi

1 Pk

"\ 2H,
2
k=1

— o)

Thus we see that with this distribution, the number of routing hops per search is logarithmic

in the number of nodes.

3.4.2 Multiple long-distance links

The next interesting question is whether we can reduce the number of routing hops per
search by using multiple long-distance links instead of a single one. In addition to im-
provement in performance, multiple links also give the benefit of robustness in the face of
failures. We first look at improvement in performance by using multiple links in the network
and then go on to analysis of failures in Section 3.5. We consider different strategies for
generating links and routing depending on number of long-distance links £ in two ranges:
£ € [1,logn] and £ € (logn,n°, 0 < ¢ < 1. Let us first consider our randomized strategy

for link distribution when £ € [1,log n].

3

¢=3 1
W

S

Figure 3.4: Multiple (¢) long-distance links for each node s.

In [67], Kleinberg uses a group structure to get O(logn) routing hops for the case of
a polylogarithmic number of links. However, he uses a more complicated algorithm for
routing while we obtain the same bound (for the case of a line) using only greedy routing.
We prove that with £ € [1,logn] long-distance links, the expected number of routing hops

per search is O(log? n/£). The basic idea for the proof comes from Kleinberg’s model [66].

43

Kleinberg considers a two-dimensional grid with nodes at every grid point. The routing
of the message is divided into phases. A message is said to be in phase j if the distance
from the current node to the destination node is between 2/ and 2/*!. There are at most
(logmn + 1) such phases. He proves that the expected time spent in each phase is at most
O(logn), thus giving a total upper bound of O(log?n) on the number of routing hops for

routing. We use the same phase structure in our model, and our proof is along similar lines.

Theorem 3.5 Let each node be connected to its immediate neighbors (at distance 1) and
£ long-distance neighbors chosen independently with replacement, with probability inversely
proportional to their distances from the node. Let £ € [1,logn|. Then the ezpected number

of routing hops per search, with n nodes is T(n) = O(log? n/f).

Proof: In our multiple-link model, each node has £ long-distance neighbors chosen

with replacement. The probability that v chooses a node u as its long-distance neighbor

d(v,u)!

is 1 — (1 — q)¢, where ¢ = o, Ao)T We can get a lower bound on this probability as

follows:

1-(1-9° > 1—(1—q€+e(£2_ \?)
_ qe_£(42—1)q2
= |1 (E;I)q]
- qf_l—é—q+g]
s

Observe that £g < 1, because g < @ and ¢ < logn. So, the probability that v chooses u

as its long-distance neighbor is at least

Lq
ot [1 - ﬂ

(V4
Q
(S
| —— |
—_
|
| =
—_

Now suppose that the message is currently in phase j. To end phase j at this step, the
message should enter a set of nodes B; at a distance < 27 of the destination node ¢. As the
nodes are embedded on a real line, there are at least 2/ nodes in Bj, each within distance
2711 4 27 < 2912 of ». So the message enters Bj with probability > 2%W = %.

Let X; be the total number of steps spent in phase j. Then

o
EX; =) PriX; >4
=1

[o.°] g 1—1
: Z<1‘8Hn)
=1
_ 8H,
= =

Now if X denotes the total number of steps, then X = Z;(EO" X, and by linearity of

expectation, we get EX < (1 4 logn)(8H,/¢) = O(log®n/¢). 1

For £ € (logn,nf, , 0 < ¢ < 1, we use a deterministic strategy. We represent the
location of each node as a number to a base b > 2, and generate links to nodes at distances
1z,2z,3z,...,(b — 1)z, for each z € {%,b',...,b18 1= 11 Thus the number of links
£ = (b—1)[logyn]. Routing is done by eliminating the most significant digit of the distance
at each step. As the maximum distance can be at most bl°& "1 we get T'(n) = O(log,n).
This strategy is similar in spirit to the PRR algorithm [92] explained in Section 2.2.2.

Some special cases are instructive. Let £ = O(logn), and let each node link to nodes
in both directions at distances 2¢,1 < i < 2'°87~! provided nodes are present at those
distances. This gives T'(n) = O(logn). Similarly, let £ = O(y/n). Links are established
in both directions to existing nodes at distances 1,2,3,...,1/n,2y/n,3v/n,...,v/n(y/n—1),
giving T'(n) = O(1). In fact, T'(n) = O(1) when b = n, for any fixed ¢ > 0.

Theorem 3.6 Choose an integer b > 1. With £ = (b — 1)[log,n|, let each node link to £
nodes at distances 1z,2z,3z,...,(b — 1)z, for each x € {b%,b',... bl10871=11 " Then the

number of routing hops per search, with n nodes is T'(n) = O(logy n).

Proof: Let di,ds,...d; be the distances of the successive nodes in the routing path

from the target ¢, where d; is the distance of the source node and d; = 0. For each

45

d;,3k; € {0,1,..., |log,]} such that b¥ < d; < ¥t Hence 1 < L%J < b. Now each node
is connected to the node at distance b*: L%J We get

d.
diy1 = d; — b¥ Lb—,;J =d; mod bF < bFi.

Thus k; drops by at least 1 at every step. As k1 < [log, n], we get T'(n) = O(log,n).

3.5 Upper bounds with failures

Failures in the system can be of two types: machine failures, where a peer can crash, or link
failures which are transient system outages. We do not make any guarantees of accessing
the data which is stored on a machine that fails. However, we are interested in seeing
how the network performs in the presence of these failures. Each search follows a trail of
machines until it reaches the destination. If any of these intermediate machines have failed,
or connecting links are broken, the search can fail. If the number of such failed searches is
small, then we can restart the failed searches. If the number is large, then we can use some
smart searching techniques, for example, re-routing the search to another random machine
in the network or backtracking, or we can even start the initial search in parallel in the
hope that one of the searches will succeed. In this section, we analyze the performance of
the searches in the presence of such failures.

One solution is to provide fault tolerance by replication. Maintaining several copies
provides survivability, allows load balancing over different replicas, and helps eliminates
untrustworthy peers by validation. Suitable placement of replicas can also help to eliminate
co-related failures such as system outages or natural disasters. However, it requires addi-
tional maintenance for replica management and load balancing between replicas. We focus
on the inherent fault tolerance of the data structure to see how it performs in the presence
of faults without additional mechanisms to repair these faults.

Although we analyze only crash failures, there are other kinds of failures that can occur in
the system. A network partition constitutes a more serious failure because it may completely

isolate some part of the network from the rest of it. In such a case, a search may come

46

very close to the destination but it may be unable to reach it because all the neighbors of
the target are inaccessible. To detect and repair partitions, each node can keep track of
some other random nodes in the network that it knows of, and in the absence of any search
activity, ping these nodes to check it if has been partitioned off from the rest of the network.
We restrict our focus to performance of searches within a connected component of our data
structure.

An even worse type of failure to deal with is a Byzantine failure, when a machine
continues to participate in the network but its actions becomes untrustworthy. A byzantine
participant could intercept searches and send out bogus messages, or worse, lie about its
position in the data structure. Douceur [31] showed that if a single faulty entity can rep-
resent multiple identities and infiltrate the network, it can control a substantial fraction of

the network. We defer the issue of dealing with byzantine failures to future work.

3.5.1 Failure of links

We start by analyzing the performance of our network in the presence of link failures in the
overlay network. A link between two nodes u and v in the overlay network could fail if the
network connection between the two machines that map to u and v, is faulty. It appears
that our linking strategies may fail to give the same number of routing hops per search in
case the links fail. However, we show that we get reasonable performance even with link
failures. In our model, we assume that each link is present independently with probability
p. Let us first look at the randomized strategy with £ € [1,log n] long-distance links.

LINK PRESENT
WITH PROB. p

y

ABSENT LINK

Figure 3.5: Each long-distance link is present with probability p.

Our proof is along similar lines as our proof for the case of no failures. Intuitively, since

some of the links fail, we expect to spend more time in each phase and this time should

47

be inversely proportional to the probability with which the links are present. We prove
that with each link present with probability p, the expected time spent in each phase is

O(log n/pt), which gives a total of O(log® n/pf) routing hops per search.

Theorem 3.7 Let the model be as in Theorem 8.5. If the probability of a long-distance
link being present is p, then the expected number of routing hops per search, with n nodes

is O(log® n/pt).

Proof: Recall that in case of no link failures, the probability that v chooses a node u
as its long-distance neighbor is at least ¢£/2 where ¢ = %.

Now when we consider link failures, given that v chose w as its long-distance neighbor,
the probability that there is a link present between v and u is p. So, the probability that v
chooses a node u as its long-distance neighbor is at least pg//2 = pl[2d(u,v)H,] '.

The rest of the proof is the same as the proof for theorem 3.5. Let X; be the number

of steps spent in phase j. Then

o0
EX; =) Pr[X; >4
i=1

8H,
pl

If X denotes the total number of steps, then by linearity of expectation, we get FX <
(1 +logn)(8H, /pt) = O(log? n/pt). I

We turn to the deterministic strategy with £ € (logn,n], 0 < ¢ < 1. If a link fails,
then the node has to take a shorter long-distance link, which will not take the message as
close to the target as the initial failed link. Clearly as p decreases, the message has to take
shorter and shorter links which increases the number of routing hops.

To make the analysis simpler, we change the link model slightly, and let each node
be connected to other nodes at distances %5, 52, ..., bl1%8 7 Once again, we compute
the expected distance covered from the current node and use Lemma 3.1 to get a total of

O(blog n/p) routing hops.

48

Theorem 3.8 Let the number of links be O(logyn), and let each node have a link to dis-
tances b°, b1, b2, ... bloge™] If the probability of a link being present is p, then the ezpected

number of routing hops per search, with n nodes is T'(n) = O(bH, /p).

Proof: Let the distance of the current node from the destination be k. Let pj, represent
the distance covered starting from this node. Then with probability p, there will be a link

covering distance 18 k] If this link is absent with probability ¢ = 1 — p, then we can

k|—1

cover a distance bl with a single link with probability pqg, and so on. In general, the

average distance u; covered when the message is at distance k from the destination is

Mk — pbl.lOgb kJ + qul.lOgb kJ_l + . _|_ pql.lOgb kj _lbl + ql.lOgb kJ bO

[log, k|

> Z prlog;l7 k| fiqi
=0

[logy k|

= polowkl Y (%)

Z:O(q/b) llogy k] +1
1—(q/b)

p(bUOgb k]+1 _ q|_10gb kj-l—l)

_ ppllogs k] 1=

b—q
p(bk/b—1)
b—q

Y

Y

Using Lemma 3.1, we get

1
T(n) < ;E
B “~ 2(b—q)
B HHp(k—l)
B 20b—q) [~ 1
- L_2<k—1>]
= O(bHy/p)

49

As p decreases, the number of routing hops increases; whereas as b decreases, the number

of routing hops decreases but the information stored at each node increases. I

3.5.2 Failure of nodes

A node failure in the overlay network implies that some vertex v has failed. This situation
arises if the resource mapped to point v is no longer available, or if the machine z that hosts
that resource has crashed. In the latter case, all points v € V, that x maps to, will also fail.

We consider two different cases of node failures to study their effect on routing perfor-
mance. In the first case, all the nodes only link to other nodes that have not already failed.

In the second case, failures occur after all the links are established.

Binomially distributed nodes Let p be the probability that a node is present. Here
also, each node is connected to its nearest neighbors and one long-distance neighbor. In
addition, the probability of choosing a particular node as a long-distance neighbor is con-

ditioned on the existence of that node.

Theorem 3.9 Let the model be as in Theorem 3.4. Let each node be present with probability
p and all nodes link only to existing nodes. Then the expected number of routing hops per

search, with n nodes is O(H?2).

Proof: We bound the expected drop py from point k as follows:

ko1 k-1 1 . m-k1 q. natk 1 q .
i:17'l'p+zi:1 2%—i p+Zi;1 71 p+Zi:22kz‘ L-p

e = p-S p-S p-S p-S
1
> g[k+0+Hn1—k+Hn2+k —sz]
> E> K
S~ 2H,

Using Lemma 3.1, we get T'(n) < Y-}_; 1/ur = O(H?2). This is exactly the same result that

we get in Section 3.4.1 where all the nodes are present. |l

This result is not surprising because if nodes link only to other existing nodes, the only
difference is that we get a smaller random graph. This does not affect the routing algorithm

or the number of routing hops per search

50

General failures We observe that the analysis for node failures is not as simple as that
for link failures, because we no longer have the important property of independence that
we have in the latter case. In the case of link failures, the nodes first choose their neighbors
and then it is possible that some of these links fail; thus, the event that a node is connected
to another node is completely independent of the event that, say, its neighbor is connected
to the same node. Each link fails independently, and so the accessibility of a target node
from any other node depends only on the presence of the link between the two nodes in
question.

In case of node failures, this important independence property is no longer true. Suppose
that a node v cannot communicate with some other node u (because u failed), even though
there may be a functional link between v and u. Now the probability of some other node
w being able to communicate with u is not independent of the probability that v can
communicate with u, because the probability of u being absent is common for both the
cases. This complicates the analysis of the performance because it is no longer the case
that if one node cannot communicate with some other node, it has a good chance of doing
so by passing the message to its neighbor.

In order to analyze this situation, we consider jumps only to one phase lower rather than
jumping over several phases. The idea is that the jumps between phases are independent,
so once we move from phase j to phase j — 1, further routing no longer depends on any
nodes in phase j. We can condition on the number of nodes being alive in the lower phase
and estimate the time spent in each phase. Intuitively, if a node is present with probability
p, we would expect to wait for a time inversely proportional to p in anticipation of finding

a node in the lower phase to jump to.

Theorem 3.10 Let the model be as in Theorem 3.5, and let each node fail with probability

p. Then the expected number of routing hops per search, with n nodes is O(log?n /(1 — p)L).

Proof: Let T be the time taken to drop down from phase j to phase j — 1. Let m
out of M nodes be alive in phase j — 1, and let g be the probability that a node in phase
j is connected to some node in phase 7 — 1. Then the expected time T to drop to phase

j — 1, given that there are m live nodes in it (each of the M nodes are equally likely to have

51

failed), is given by

E[T|m] =1+ [(1 _ g+ M =m)

-] BTim = L.

As m can vary between 1 and MY, we get

piry = >0 2 [y (V)]

m=1
M2 (M
< quZIm—_HpM (1-p) m)
_ 2M = Mompy _ oymi1(M+1
= o p 2= ey (i)
oM
< DA)[p+(1—p)]MJrl
oM

Not surprisingly, the expected waiting time in a phase is inversely proportional to the
probability of being connected to a node in the lower phase and to the probability of such
a node being alive.

For our randomized routing strategy with £ € [1,logn] long-distance links, ¢ = ¢/H,,.

With at most (logn + 1) phase, we get an expected O(log?n/(1 — p)£) routing hops. |

In contrast, for our deterministic routing strategy, certain carefully chosen node failures
can lead to dismal situations where a message can get stuck in a local neighborhood with
no hope of getting out of it or eventually reaching the destination node. We conjecture
that this should be a low-probability event, so its occurrence will not affect the number of

routing hops considerably.

INote that m cannot be 0 because if there are no live nodes in the lower phase, the routing fails at this
point.

52

3.6 Construction of graphs

As the group of nodes present in the system changes, so does the graph of the virtual
overlay network. In order for our routing techniques to be effective, the graph must always
exhibit the property that the likelihood of any two vertices v and u being connected is
Q(1/d(v,u)), where d(v,u) is the distance between the two nodes v and u. We describe a
heuristic approach to construct and maintain a random graph with such an invariant.

Since the choice of links leaving each vertex is independent of the choices of other
vertices, we can assume that points in the metric space are added one at a time. Let v be
the k-th point to be added. Point v chooses the end-points of its outgoing links according
to the inverse power-law distribution with exponent 1 and connects to them by running the
search algorithm. If a desired point u is not present, v connects to u’s closest live neighbor.
In effect, each of the k — 1 points already present before v is surrounded by a basin of
attraction, collecting probability mass in proportion to its length. However, this creates a
skew in the link distribution as links are only established from new nodes to older nodes.
So we amend our strategy to allow older nodes also to establish links to new nodes.

Let v be a new point. We give earlier points the opportunity to obtain outgoing links

to v by having v:

1. Calculate the number of incoming links it “should” have from points added before it

arrived, and

2. Choose such points according to the inverse power-law distribution with exponent 1/I.

If £ is the number of outgoing links for each point, then ¢ will also be the expected
number of incoming links that v has to estimate in step (1). We approximate the number
of links ending at v by using a Poisson distribution with rate £, that is, the probability that

e_k#, and the expectation of the distribution is 4.

v has k incoming links is
After step (2) is completed by v, each chosen point u responds to v’s request by choosing
one of its existing links to be replaced by a link to v. The choice of the link to replace can

vary. We use a strategy that builds on the work of Sarshar et al[105]. In that work,

Il All this can be easily calculated by v since the link probabilities are symmetric.

53

the authors use ideas of Zhang et al.[123] to build a graph where each node has a single
long-distance link to a node at distance d with probability 1/d. When a node with a long-
distance link at distance d; encounters a new node at distance ds, either due to its arrival
or due to a data request, it replaces its existing link with probability ps/(p1 + p2), where
p; = 1/d;, and links to the new node. We extend this idea to our case of multiple long-
distance links. Consider a node u with k neighbors at distances di,do,...,d;. When a new
node v at distance di1 requests an incoming link from u, u replaces one of its existing links
with a link to v with probability pg11/ Ef:ll pj. This is a trivial extension of the formula
p2/(p1+p2) of [105]. However, this probability must now be distributed among u’s k existing
long-distance links since u needs to choose one of them to redirect to v. We choose to do
that according to the inverse power-law distribution with exponent 1, that is, u chooses to
replace its link to the node at distance d;, 1 < i < k, with probability p;/ Z?:l p;. Hence,
the probability that u decides to link to v and decides to replace its existing link to the node
at distance d; with a link to v is equal to (p;/ 2?21 Dj) - (Pr+1/ Zfil pj). Notice that u
may decide not to redirect any of its existing links to v with probability 1 — pg11/ Zfill Dj-
The intuition for using such replacement strategy comes from the invariant that we want
to maintain dynamically as new nodes arrive: u has a link to a node 7 at distance d; with
probability inversely proportional to d;; hence, conditioning on u having k£ long-distance

links, the following equation must hold:

Prob [u replaces link to ¢ with link to v] = Prob [u has a link to i before v arrives]

— Prob [u has a link to 7 after v arrives]

_ pi I 4

- k k+1
Zj:l bj Zj:l pj

bi Pr+1

k Tkt
Zj:lpj Zj:lpj
We note that the same heuristic can be used for a repair mechanism. A node can periodically
ping its neighbors to check if they are still alive. Suppose a node detects that some its
neighbors have failed. Using the above heuristic, it can choose some other nodes in the

network to link to. If most of the neighbors have failed, then the node can just re-insert

54

itself in the network.

To analyze the performance of the heuristic in practice, we used it to construct a fully-
populated network of n = 2!7 nodes embedded at grid points on a real line. Each node
had logn (17) links. After averaging the results over the ten networks, we plotted the
distribution of long-distance links derived from the heuristic, along with the ideal inverse
power-law distribution with exponent 1, as shown in Figure 3.6. We see that the derived
distribution tracks the ideal one very closely, with the largest absolute error being roughly

equal to 0.023 for links of length 2, as shown in the graph of Figure 3.7.

le-01

105 |

Probability of link

1e-08 I I I I "
1e00 1e01 1e02 1e03 1e04 1e05 1e06

Length of 1ink

Figure 3.6: The distribution of long-distance links produced by the inverse-distance heuristic
(Derived) compared to the ideal inverse power-law distribution with exponent 1 (Ideal).

0. 005 , , ,

0. 000

- 0. 005

-0.010

Absol ute error

-0.015

_0. 020 i i i i
1e00 1e01 1e02 1e03 1e04 1e05 1e06

Length of link

Figure 3.7: The absolute error between the derived distribution and the ideal inverse power-
law distribution with exponent 1.

55

We also performed experiments for an alternative link replacement strategy: a node
chooses its oldest link to replace with a link to the new node. The performance of this
strategy is almost as good as the performance of our replacement strategy described previ-
ously. We omit those results because it is difficult to distinguish between the results of the
two strategies on the scale used for our graphs.

There has also been other related work by Pandurangan et al.[90] on how to construct,
with the support of a central server, random graphs with many desirable properties, such as
small diameter and guaranteed connectivity with high probability. Although it is not clear
what kind of fault-tolerance properties this approach offers if the central server crashes,
or how the constructed graph can be used for efficient routing, it is likely that similar

techniques could be useful in our setting.

3.7 Experimental results

To measure the performance of our data structure in the presence of failures, we simulated
a network of n = 2'7 nodes at the application level, not the IP level. Each node was
connected to its immediate neighbors and had logn (17) long-distance links chosen as per
the inverse power-law distribution with exponent 1 as explained in Section 3.4. Routing
was done greedily by forwarding each message to the neighbor closest to the target node.
In each simulation, the network was set up afresh, and a fraction p of the nodes failed.
We then repeatedly chose random source and destination nodes that had not failed and
routed a message between them. For each value of p, we ran 1000 simulations, delivering
100 messages in each simulation, and averaged the number of routing hops for successful
searches and the number of failed searches.

With node failures, a node may not be able to find a live neighbor that is closer to the
target node than itself. We studied three possible strategies to overcome this problem as

follows:

1. Terminate the search.

2. Randomly choose another node, deliver the message to this new node, and then try

56

to deliver the message from this node to the original destination node (similar to the
hypercube routing strategy of Valiant [116]). We use this strategy only once; if the
chosen random node has failed, or if there is a dead node on the either the path from
the original source to the random node or on the path from the random node to the

destination node, the search fails.

3. Keep track of a fixed number (in our simulations, five) of nodes through which the
message is last routed and backtrack. When the search reaches a node from where
it cannot proceed, it backtracks to the most recently visited node from this list and

chooses the next best neighbor to route the message to.

For all these strategies we note that once a node chooses its best neighbor in some step of
routing, it does not send the message to any other link if it finds out that the best neighbor

has failed, unless it gets another message as a part of the backtracking strategy.

) 0.7 T T T L T T T
& 1 1 . Fai | ed Searches g
So6k . RandomRe-route " |
5 1 : ‘ Backt r acki ng _~"-*--
b3} : : : S
n 0.5 F ; ~ -
S |
— 0.4} -
= |
0.3 i’ i
S
c 0.2 E g
o
c 0.1 -
© : : : : :
L 0.0 D e DI I I 1 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fraction of failed nodes

Figure 3.8: The fraction of messages that fail to be delivered as a function of the fraction
of failed nodes.

Figure 3.8 shows the fraction of messages that fail to be delivered. We see that the
network behaves well even with a large number of failed nodes. Even if we just terminate
the search upon reaching a failed node, we get less than p fraction of failed searches with
p fraction of failed nodes. In addition, backtracking gives a significant improvement in
reducing the number of failures as compared to the other two methods: with 80% failed

nodes, we still get less than 30% failed searches. These results are very promising and it

57

would be interesting to study backtracking analytically.

T T T T
1 1 1 Fail ed Search —— .
16 f-ii———~Random Re-rout e -----==
‘ : Backtracking -~

14

routing hops

13
12
11

Nurber of

10

ol
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Fraction of failed nodes

Figure 3.9: The average number of routing hops for successful searches as a function of the
fraction of failed nodes.

Figure 3.9 shows the number of routing hops for successful searches versus the fraction
of failed nodes. Here too, the network does well with failures; the average number of routing
hops is small except with backtracking. We see that in the case of random rerouting, the
average number of routing hops does not increase too much as the probability of node failure
increases. This happens because quite a few of the searches fail, so the ones that succeed

(with a few routing hops) lead to a small average number of routing hops.

T T T T
| Construct ed Network

| deal network --—--——-—-

Fraction of failed searches
© 0 0 0 o0 o0 o o o o r
O P N W M U1 O N 0O ©O O

0.0 0.10.20.30.40.50.60.7 0.8 0.9
Probability of node failure

Figure 3.10: A comparison of the fraction of failed searches in the ideal network and the
network constructed according to the heuristic given in Section 3.6.

58

We also compared the search performance of the ideal network and that of the network
constructed using the heuristics given in Section 3.6. We ran 10 iterations of constructing a
network of 2'7 nodes, both ideally as well as according to the heuristic, and delivered 10000
messages between randomly chosen nodes. The search was terminated if it reached a failed
node, similar to the first strategy in the earlier experiments. Figure 3.10 shows the number
of failed searches as the probability of node failure increases. We see that the network
constructed using the heuristic does not perform as well as the ideal network even though
the magnitude of error between the two distributions is fairly small (Figures 3.6 and 3.7). It
appears that the small skew in the link distribution affects the search performance greatly,

and it would be interesting to see how this can be further improved.

3.8 Conclusions and future work

Model Number of Links ¢ | Upper Bound Lower Bound
2
1 O(log?n) gz(Pl
No failures - O ulggglog —) [One-sided]
[1,log] O(5) | Q%) [Two-sided
(log 7, n‘] O(1%%) Q(3E7)
Link present with [1,logn] O(1°§2) -
probability p (logm, n®] O(bl‘;g”) ,
Node present with (1, log n] O(Ingn)]
probability p P

Table 3.1: Summary of upper and lower bounds for greedy routing.

Table 3.1 summarizes our upper and lower bounds. We note that with our deterministic
strategy with no failures, the number of long-distance links £ = O(blog,n).

We have shown that greedy routing in an overlay network organized as a random graph
in a metric space can be a nearly optimal mechanism for searching in a peer-to-peer system,
even in the presence of many faults. Our lower bound also shows that our linking strategy
i.e., using the inverse power-law distribution with exponent 1, is close to optimal.

We see this as an important first step in the design of efficient algorithms for such

59

networks, but many issues still need to be addressed. Our results mostly apply to one-
dimensional metric spaces like the line or the circle. One interesting possibility is whether
similar strategies would work for higher-dimensional spaces. We could then use some of
the dimensions to represent the actual physical distribution of the machines in real space,
which would allow resources requests to be serviced from replicas that are closest in physical
space to the requesting machine. Good network-building and search mechanisms for this
model might allow efficient location of nearby instances of a resource without having to
resort to local flooding (as in [63]). Our experimental results also show that using smart
search techniques such as backtracking greatly improve the performance of searches in the
presence of failure. It would be interesting to analyze this strategy formally and design
other strategies that can reduce the number of failed searches. Another promising direction
would be to study the security properties of greedy routing schemes to see how they can
be adapted to provide desirable properties like anonymity or robustness against byzantine

failures.

60

Chapter 4

Skip Graphs

In this chapter, we explore some of the limitations of distributed hash tables and propose

a new data structure called a skip graph for implementing a peer-to-peer system.

4.1 Drawbacks of DHT's

As explained in Chapter 2, recent peer-to-peer systems like CAN [95], Chord [112], Pas-
try [99], Tapestry [125], and Viceroy [78] use a distributed hash table approach for a peer-
to-peer system. The main operation in these networks is to retrieve the identity of the node
which stores the resource, from any other node in the network. To this end, there is an
overlay graph in the form of a metric space in which the nodes and resources are embedded.
The locations of the nodes and resources in the overlay network are determined by the hash
values of their identifiers and keys respectively. In a network like Chord, the purpose of the

hash function is two-fold:

1. Hashing maps resources to nodes uniformly so that no node gets much more than its
fair share of resources to manage. In Chord with m machines and n resources, using a
base hash function such as SHA-1 [1] guarantees with high probability that each node
is responsible for at most (1 + logm) - n/m keys. Thus, hashing provides a natural

load balancing among the nodes.

2. In addition, hashing the node identifiers (for example, their IP addresses) distributes

61

the nodes uniformly in the overlay metric space. As a result of that, it does not need
any additional mechanism to balance the tree that is maintained for routing in the

network.

However, hashing results in scrambling the resource keys and in turn destroys spatial
locality. Spatial locality is the property where related resources are located close to each
other in the data structure. For example, if the resources are web pages, then if the net-
work maintained spatial locality, http://www.cnn.comand http://www.cnn.com/weather
would be located close to each other in the data structure. If a search for any resource 7 + 1
is immediately preceded by a search for resource i, the network would be able to use the
information from the first search to improve the performance of the second search. This
functionality helps applications such as prefetching of web pages and smart browsing. In
a DHT, hashing will map these resources to random locations in the overlay network, and
the two searches will be completely independent of each other.

Also, as hashing destroys the ordering on the keys, DHT systems do not easily support
complex queries such as near matches to a key, keys within a certain range or approximate
queries. Such systems cannot be easily used for applications such as versioning and user-
level replication (explained in Section 4.6), without adding another layer of abstraction
and its associated maintenance costs. In contrast, a data structure that does not destroy
the key ordering can be used to provide all these features allowing for a simple underlying
architecture. At the same time, we can continue to use the load balancing properties of the

DHTSs by using hashing, independent of the mechanism for resource location.

4.2 QOur approach

We describe a new model for a peer-to-peer network based on a distributed data structure
that we call a skip graph. Before we go on to explain skip graphs in detail in Section 4.3,
we give an overview of the advantages of this data structure. Resource location and dynamic
node addition and deletion can be done in time logarithmic in the size of the graph, and
each node in a skip graph requires only logarithmic space to store information about its

neighbors. More importantly, there is no hashing of the resource keys, so related resources

62

are present near each other in a skip graph. This may be useful for certain applications
such as prefetching of web pages, enhanced browsing, and efficient searching. Skip graphs
also support complex queries such as range queries, i.e., locating resources whose keys lie
within a certain specified range*. There has been interest in supporting complex queries in
peer-to-peer-systems, and designing a system that supports range queries was posed as an
open question [50]. Skip graphs are resilient to node failures: a skip graph tolerates removal
of a large fraction of its nodes chosen at random without becoming disconnected, and even
the loss of an O(1/logn) fraction of the nodes chosen by an adversary still leaves most of
the nodes in the largest surviving component. Skip graphs can also be constructed without
knowledge of the total number of nodes in advance. In contrast, DHT systems such as
Pastry and Chord require a priori knowledge about the size of the system or its key space.
Although these systems initially choose a very large keyspace which cannot be exhausted
easily, for example 2'?® identifiers, no requirement about the knowledge of the size of the
keyspace is still an interesting property.

The rest of this chapter is organized as follows: we describe skip graphs in Sections 4.3.
Some very recent related work is covered in Section 4.4. We give the details of the skip
graph algorithms in Section 4.5. Some applications of skip graphs are given in Section 4.6.
Sections 4.7 and 4.8 describe fault-tolerance properties and the repair mechanism for a skip
graph. Congestion analysis and results are described in Section 4.9. Finally, we conclude

in Section 4.10.

4.3 Skip graphs

A skip list, introduced by Pugh [93], is a randomized balanced tree data structure organized
as a tower of increasingly sparse linked lists. Level 0 of a skip list is a linked list of all nodes
in increasing order by key. For each i greater than 0, each node in level ¢ — 1 appears in
level ¢ independently with some fixed probability p. In a doubly-linked skip list, each node
stores a predecessor pointer and a successor pointer for each list in which it appears, for

an average of ﬁ pointers per node. The lists at the higher level act as “express lanes”

*Skip graphs support complex queries along a single dimension i.e., for one attribute of the resource, for
example, its name key.

63

that allow the sequence of nodes to be traversed quickly. Searching for a node with a
particular key involves searching first in the highest level, and repeatedly dropping down

a level whenever it becomes clear that the node is not in the current level. Considering

the search path in reverse shows that no more than ﬁ nodes are searched on average per

level, giving an average search time of O (logn) with n nodes at level 0. Skip

1
(1-p)log
lists have been extensively studied [93, 91, 30, 65, 64], and because they require no global

balancing operations are particularly useful in parallel systems [40, 41].

HEAD TAIL
(33)

U LEVEL 2

i (o) a3 o 2g) L
(@@ (g () e

J N

Figure 4.1: A skip list with n = 6 nodes and [logn] = 3 levels.

We would like to use a data structure similar to a skip list to support typical binary tree
operations on a sequence whose nodes are stored at separate locations in a highly distributed
system subject to unpredictable failures. A skip list alone is not enough for our purposes,
because it lacks redundancy and is thus vulnerable to both failures and congestion. Since
only a few nodes appear in the highest-level list, each such node acts as a single point of
failure whose removal partitions the list, and forms a hot spot that must process a constant
fraction of all search operations. Skip lists also offer few guarantees that individual nodes
are not separated from the rest even with occasional random failures. Since each node is
connected on average to only O(1) other nodes, even a constant probability of node failures
will isolate a large fraction of the surviving nodes.

Our solution is to define a generalization of a skip list that we call a skip graph. As in
a skip list, each of the n nodes in a skip graph is a member of multiple linked lists. The
level 0 list consists of all nodes in sequence. Where a skip graph is distinguished from a
skip list is that there may be many lists at level 7, and every node participates in one of
these lists, until the nodes are splintered into singletons after O(logn) levels on average. A

skip graph supports search, insert, and delete operations analogous to the corresponding

64

operations for skip lists; indeed, we show in Lemma 4.1 that algorithms for skip lists can be
applied directly to skip graphs, as a skip graph is equivalent to a collection of n skip lists
that happen to share some of their lower levels.

Because there are many lists at each level, the chances that any individual node par-
ticipates in some search is small, eliminating both single points of failure and hot spots.
Furthermore, each node has ©(logn) neighbors on average, and with high probability no

node is isolated. In Section 4.7 we observe that skip graphs are resilient to node failures

1
logn

and have an expansion ratio of Q(;—) with n nodes in the graph.

In addition to providing fault tolerance, having an Q(logn) degree to support O(logn)
search time appears to be necessary for distributed data structures based on nodes in a one-
dimensional space linked by random connections satisfying certain uniformity conditions [4].
While this lower bound requires some independence assumptions that are not satisfied
by skip graphs, there is enough similarity between skip graphs and the class of models
considered in the bound that an Q(logn) average degree is not surprising.

We now give a formal definition of a skip graph. Precisely which lists a node x belongs
to is controlled by a membership vector m(z). We think of m(z) as an infinite random
word over some fixed alphabet, although in practice, only an O(logn) length prefix of m(z)
needs to be generated on average. The idea of the membership vector is that every linked
list in the skip graph is labeled by some finite word w, and a node z is in the list labeled
by w if and only if w is a prefix of m(z).

To reason about this structure formally, we will need some notation. Let X be a finite
alphabet, let ¥* be the set of all finite words consisting of characters in ¥, and let % consist
of all infinite words. We use subscripts to refer to individual characters of a word, starting
with subscript 0; a word w is equal to wowiws Let |w| be the length of w, with |w| = oo
ifwe X¥. If |w| > 4, write w | i for the prefix of w of length 7. Write € for the empty word.
If v and w are both words, write v < w if v is a prefix of w, i.e., if w | |v| = v. Write w; for
the 4-th character of the word w. Write wy A ws for the common prefix (possibly empty) of
the words wy and ws.

Returning to skip graphs, the bottom level is always a doubly-linked list S, consisting of

all the nodes in order as shown in Figure 4.2. In general, for each w in 3*, the doubly-linked

65

list Sy, contains all z for which w is a prefix of m(z), in increasing order. We say that a
particular list S,, is part of level 4 if |w| = i. This gives an infinite family of doubly-linked
lists; in an actual implementation, only those S,, with at least two nodes are represented.
A skip graph is precisely a family {S,} of doubly-linked lists generated in this fashion.
Note that because the membership vectors are random variables, each S, is also a random

variable.

o | o LEVEL 2

MEMBERSHIP @ 75 @ eveL 1
VECTOR\E@ 10 @ @ 11 11
SKIPLIST | 0 01 o =

e e € C O (L CO TV
L 00 10 01 00 11 1]

Figure 4.2: A skip graph with n = 6 nodes and [logn]| = 3 levels.

We can also think of a skip graph as a random graph, where there is an edge between
z and y whenever z and y are adjacent in some S,,. Define z’s left and right neighbors at
level 7 as its immediate predecessor and successor, respectively, in S5, or L if no such
nodes exist. We will write zL; for z’s left neighbor at level i and zR; for z’s right neighbor,
and in general will think of the R; as forming a family of associative composable operators
to allow writing expressions like zR;RZ | etc. We write z.maxLevel for the first level £ at
which z is in a a singleton list, i.e., z has at least one neighbor at level £ — 1.

An alternative view of a skip graph is a trie [29, 36, 68] of skip lists that share their lower
levels. If we think of a skip list formally as a sequence of random variables Sy, S1,Ss, ...,

where the value of S; is the level 7 list, then we have:

Lemma 4.1 Let {Sy} be a skip graph with alphabet . For any z € X%, the sequence

So, 51,80, ..., where each S; = S,}i, is a skip list with parameter p = |S|71.

Proof: By induction on i. The list Sy equals S¢, which is just the base list of all

nodes. A node z appears in S; if m(z) [4 = z [; conditioned on this event occurring, the

66

probability that z also appears in S;;1 is just the probability that m(x);1; = z;+1. This
event occurs with probability p = ||}, and it is easy to see that it is independent of the
corresponding event for any other z’ in S;. Thus each node in S; appears in S;;; with

independent probability p, and Sy, S1,... form a skip list. il

For a node z with membership vector m(z), let the skip list S, be called the skip

list restriction of node z.

4.3.1 Implementation

In an actual implementation of a peer-to-peer system using a skip graph, each node in a
skip graph will be a resource. The resources are sorted in increasing lexicographic order
of their keys. Mapping these keys to actual physical machines can be done in two ways:
In the first approach, we make every machine responsible for the resources that it hosts.
Alternatively, we use a DHT approach where we hash node identifiers and resource keys
to determine which nodes will be responsible for which keys. The first approach gives
security and manageability whereas the second one gives good load balancing. For now,
we treat nodes in the skip graph as representing resources, and present our results without
committing to how these resources are distributed across machines. Each node in a skip
graph stores the address and the key of its successor and predecessor at each of the O(logn)
levels. In addition, each node also needs O(logn) bits of space for its membership vector.
In both of the above approaches, with n resources in the network, each machine is
responsible for maintaining O(logn) links for each resource that it hosts, for a total of
O(nlogn) links in the entire network. This is a much higher storage requirement than the
O(mlogm) links for DHTs, where m is the number of machines in the system. Further, in
our repair mechanism (described in Section 4.8), each machine will periodically check to see
that its links are functional. This may result in a flood of messages given the high number
of links per machine. It is an open question how to reduce the number of pointers in a skip

graph and yet maintain the locality properties.

67

4.4 Related work

SkipNet is a system very similar to skip graphs that was independently developed by Har-
vey et al.[51]. SkipNet builds a trie of circular, singly-linked skip lists to link the machines
in the system. The machines names are sorted using the domain in which they are located
(for example www.yale.edu). In addition to the pointers between all the machines in all the
domains that are structured like a skip graph, within each individual domain, the machines
are also linked using a DHT, and the resources are uniformly distributed over all the ma-
chines using hashing. A search consists of two stages: First, the search locates the domain
in which a resource lies by using a search operation similar to a skip graph. Second, once the
search reaches some machine inside a particular domain, it uses greedy routing as in DHT's
to locate the resource within that domain. SkipNet has been successfully implemented, and
this shows that a skip-graph-like structure can be used to build real systems.

The SkipNet design ensures path locality i.e., the traffic within a domain traverses
other nodes only within the same domain. Further, each domain gets to hosts it own
data which provides content locality and inherent security. Finally, using the hybrid
storage and search scheme provides constrained load balancing within a given domain.
However, as the name of the data item includes the domain in which it is located, transparent
remapping of resources to other domains is not possible, thus giving a very limited form
of load balancing. Another drawback of this design is that it does not give full-fledged
spatial locality. For example, if the resources are document files, sorting according to the
domain on which they are served gives no advantage in searching for related files compared
to DHTs.

Zhang et al.[124] and Awerbuch et al.[9] have both independently suggested designs for
peer-to-peer systems using separate data structures for resources and the machines that
store them. The main idea is to build a data structure D over the resources, which are
distributed uniformly among all the machines using hashing, and to build a separate DHT
over all the machines in the system. Each resource maintains the keys of its neighboring
resources in D, and each machine maintains the addresses of its neighboring machines as

per the DHT network. To access a neighbor b of resource a, a initiates a DHT search for

68

CHORD ROUTING
TABLES

SKIP GRAPH

LINKS
FROM ATO G:

\\337
C| 011
LOGICAL PATHA-E ™

D | 2 A » A E-G—«~

E] 000
ACTUAL PATH:
. ——NODES HASH(A)-HASH(E)-HASH(G)

T F 5 3 D 6-5 -~ -
Ha> BH T
A| 001 G

c T
0 MEMBERSHIP

RESOURCES 10
VECTORS
Nl

SKIP GRAPH SEARCH

Figure 4.3: An example of the hybrid system design proposed by Awerbuch et al.[9]. Here,
we use Chord for mapping nodes and a skip graph for mapping resources. This is a simplified
version with only one resource per node.

the hash value of b. One pointer access in D is converted to a search operation in the
DHT, so if any operation in D takes time ¢, the same operation takes O(tlogm) time with
m machines in this hybrid system. Zhang et al.[124] focus on implementing a tree of the
resources, in which each node in the tree is responsible for some fixed range of the keyspace
that its parent is responsible for. Awerbuch et al.[9] propose building a skip graph of the
resources on top of the machines in the DHT. A simple example of the latter scheme is
shown in Figure 4.3.

This design approach is interesting because it allows building any data structure using
the resources, while providing uniform load balancing. In particular, both these systems
support complex queries as in skip graphs, and uniform load balancing as in DHTs. We
believe that distributing the resources uniformly among all the nodes (as described in Sec-
tion 4.3.1) will also have the same properties as these two approaches.

However, the Awerbuch et al. approach and our uniform resource distribution approach
suffer from the same problems of high storage requirements and high volume of repair
mechanism message traffic as a skip graph. With m machines and n resources in the

system, in the Awerbuch et al. approach, each machine has to store O(logm) pointers (for

69

the DHT links) and O(log n) keys for each resource that it hosts (for the skip graph pointers).
Further, the repair mechanism has to repair the broken DHT links as well as inconsistent
skip graph keys. Finally, the search performance is degraded to O(log? m) compared to
O(logm) in DHTs and O(logn) in skip graphs. In comparison, our approach of uniform
resource distribution does slightly better as each machine stores O(logn) pointers for each
resource that it hosts, repair is required only for the skip graph links, and the search time
is O(logn) like in skip graphs.

In the Zhang et al. approach, each machine has to store k keys for the k£ children of
each tree node that it hosts, and O(logm) pointers for the DHT links. Repair involves
fixing broken tree keys as well as broken DHT links. This scheme suffers from the other
problems of tree data structures such as increased traffic on the nodes higher up in the tree,
and vulnerability to failures of these nodes. Further, unlike skip graphs, it require a priori
knowledge about the keyspace in order to assign specific ranges to the tree nodes. It is still
an open problem to design a system that efficiently supports both uniform load balancing

and complex queries.

4.5 Algorithms for a skip graph

In this section, we describe the search, insert, and delete operations for a skip graph. For
simplicity, we refer to the key of a node (e.g. z.key) with the same notation (e.g. z) as
the node itself. It will be clear from the context whether we refer to a node or its key.
In the algorithms, we denote the pointer to z’s successor and predecessor at level £ as
z.neighbor[R][¢] and z.neighbor[L][{] respectively. We define xR, formally to be the value
of z.neighbor[R][¢], if z.neighbor[R][{] is a non-nil pointer to a non-faulty node, and L
otherwise. We define zL; similarly. We summarize the variables stored at each node in
Table 4.1.

In this section, we only give the algorithms and analyze their performance; we defer the

proofs of the correctness of the algorithms to Section 4.5.4.

70

1
2

w

10
11
12
13
14

15

16
17

Variable Type
key Resource key
neighbor[R] | Array of successor pointers
neighbor[L] | Array of predecessor pointers

m Membership vector
maxLevel Integer
deleteFlag Boolean

Table 4.1: List of all the variables stored at each node.

4.5.1 The search operation

The search operation (Algorithm 1) is identical to the search in a skip list with only minor
adaptations to run in a distributed system. The search is started at the topmost level of the
node seeking a key and it proceeds along each level without overshooting the key, continuing
at a lower level if required, until it reaches level 0. Either the address of the node storing

the search key, if it exists, or the address of the node storing the largest key less than the

search key is returned.

Algorithm 1: search for node v

upon receiving (searchOp, startNode, searchKey, level):
if (v.key = searchKey) then
‘ send (foundOp, v) to startNode
if (v.key < searchKey) then
while level > 0 do
if ((v.neighbor[R][level].key < searchKey) then

send (searchOp, startNode, searchKey, level) to v.neighbor[R][level]
break

else level«level-1

else

while level > 0 do

if ((v.neighbor[L][level]).key > searchKey) then
send (searchOp, startNode, searchKey, level) to v.neighbor[L][level]
break

else level«level-1

if (level < 0) then

‘ send (notFound0Op, v) to startNode

71

Lemma 4.2 The search operation in a skip graph S with n nodes takes expected O(logn)

messages and O(logn) time.

Proof: Let X be the alphabet for the membership vectors of the nodes in the skip
graph S, and z be the node at which the search starts. By Lemma 4.1, the sequence
Sm(z) = S0, 51,82, .., where each S; = §,;, is a skip list. A search that starts at z in the
skip graph will follow the same path in S as in S,(,). So we can directly apply the skip list
search analysis given in [93], to analyze the search in S. With n nodes, on an average there
will be O(log nm) levels, for p = |%|~!. At most ﬁ nodes are searched on average at
each level, for a total of O(log nm) expected messages and O(log nm)
expected time. Thus, with fixed p, the search operation takes expected O(logn) messages

and O(logn) time. 1

The network performance depends on the value of p = |Z_1. As p increases, the search
time decreases, but the number of levels increase, so each node has to maintain neighbors at
more levels. Thus we get a trade-off between the search time and the storage requirements
at each node.

The performance shown in Lemma 4.2 is comparable to the performance of distributed
hash tables, for example, Chord [112]. With n resources in the system, a skip graph takes
O(logn) time for one search operation. In comparison, Chord takes O(logm) time, where
m is the number of machines in the system. As long as n is polynomial in m, we get the
same asymptotic performance from both DHTs and skip graphs for search operations.

Skip graphs can support range queries in which one is asked to find a key > z, a
key < z, the largest key < z, the least key > z, some key in the interval [z,y], all keys
in [z,y], and so forth. For most of these queries, the procedure is an obvious modification
of Algorithm 1 and runs in O(logn) time with O(logn) messages. For finding all nodes
in an interval, we can use a modified Algorithm 1 to find a single element of the interval
(which takes O(logn) time and O(logn) messages). With 7 nodes in the interval, we can
then broadcast the query through all the nodes (which takes O(logr) time and O(rlogn)
messages). If the originator of the query is capable of processing r simultaneous responses,

the entire operation still takes O(logn) time.

72

4.5.2 The insert operation

A new node u knows some introducing node v in the network that will help it to join the
network. Node u inserts itself in one linked list at each level till it finds itself in a singleton

list at the topmost level. The insert operation consists of two stages:

1. Node u starts a search for itself from v to find its neighbors at level 0, and links to
them.

2. Node u finds the closest nodes s and y at each level £ > 0, s < u < y, such that
m(u) [(£+1) =m(s) | ({+1) =m(y) [(£+1), if they exist, and links to them at
level £+ 1.

Because each existing node v does not require m(v)y41 unless there exists another node u
such that m(v) | ((+1) = m(u) | (£+1), it can delay determining its value until a new node
arrives asking for its value; thus at any given time only a finite prefix of the membership
vector of any node needs to be generated. Detailed pseudocode for the insert operation is
given in Algorithm 2. Figure 4.4 shows a typical execution of an insert operation in a small

skip graph with ¥ = {0, 1}, where node u = 36 is inserted starting from node v = 13.

Lemma 4.3 The insert operation in a skip graph S with n nodes takes expected O(logn)

messages and O(logn) time.

Proof: Let X be the alphabet for the membership vectors of the nodes in the skip
graph S. With n nodes, there will be average of O(log nm) levels in the skip graph,
p = |X| L. To link at level 0, a new node u performs one search operation. From Lemma 4.2,
this takes O(log nm) expected messages and O(log nm) expected time.
At each level £, £ > 0, u communicates with an average of 2/p nodes, before it finds at
most two nodes s and y, with m(s); = m(u)y = m(y)¢, s < u < y, and connects to them at
level £+ 1. The expected number of messages and time for the insert operation at all levels
is O (ﬁgj—p) (ﬁ + %)) Thus with fixed p, the insert operation takes expected O(logn)
messages and O(logn) time. |

With m machines and n resources in the system, most DHTs such as CAN, Pastry, and

Tapestry take O(logm) time for insertion; an exception is Chord which takes O(log?m)

73

Fo¥c
10 01 LEVEL 2
{13) (48
00 00 11 1|
(2) 75)—(98) |
10 11 11 LEVEL 1

(@@ (& () |*=8°

10 LEVEL 2
(1) (a8
00 00 11 1
10 11 11 LEVEL 1
(853 (s (48)]
00 01 | 00 —
(13)—(20 (s8] —~(38 (4870} (o0 | LEVELC
00 10 01 11 01 00 11 1
10 01 11 LEVEL 2
00 00 1 11

(@ (e *
00 0

00
Z
(1320 ({38 (48 —(7 (o0 | LEVELC
0 0 o1 o 0 it |

Figure 4.4: Inserting node 36 in a skip graph with ¥ = {0,1}, starting from node 13.
Messages are labeled by numbers in boxes in the order in which they are sent. Messages
1-3 implement node 36 determining the maximum level of node 13, and starting the search
operation to find its neighbor at level 0. Messages 4-5 implement the search operation, and
node 33 informing node 36 that it is node 36’s closest neighbor at level 0. Messages 6-11
implement node 36 inserting itself between nodes 33 and 48 at level 0. Messages 12-15
implement node 36 determining its neighbors at level 1, and inserting itself between nodes
33 and 48 at level 1. Messages 16-19 implement node 36 determining its neighbors at level
2, and linking to node 33 at level 2. Messages 20-21 implement node 36 determining its
neighbors at level 3, finding that no neighbors exist, and completing its insert operation.

74

Algorithm 2: insert for new node u

1 if (introducer = u) then

® N O Uk WwN

10
11

12
13
14

15
16
17

18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34

35
36
37
38
39

40
41
42

43

u.neighbor[L][0] « L
u.neighbor[R][0] < L
u.max Level < 0
Ise
if (introducer.key < u.key) then
side «+ R
otherSide + L

else
side + L
otherSide + R

send (getMaxLevelOp) to introducer
wait until receipt of (retMaxLevelOp, maxLevel)
send (searchOp, u, u.key, maxLevel-1) to introducer

wait until foundOp or notFoundOp is received
upon receiving (foundOp, clone):
terminate insert

upon receiving (notFound0Op, otherSideNeighbor):
send (getNeighborOp, side, 0) to otherSideNeighbor
wait until receipt of (retNeighbor0p, sideNeighbor, 0):
send (getLinkOp, u, side, 0) to otherSideNeighbor
wait until receipt of (setLinkOp, newNeighbor, 0):
u.neighbor[otherSide][0] +— newNeighbor

send (getLinkOp, u, otherSide, 0) to sideNeighbor
wait until receipt of (setLinkOp, newNeighbor, 0):
u.neighbor[side|[0] - newNeighbor

£+ 0

while true do

m(u)y < uniformly chosen random element of ¥

L+—1C+1

if (u.neighbor/R][¢ — 1] # 1) then
send (buddyOp, u, £ — 1, m(u)s—1, L) to u.neighbor[R][¢ — 1]
wait until receipt of (setLinkOp, neighbor, /):
u.neighbor[R][¢] < neighbor

Ise u.neighbor[R][¢] = L

f (u.neighbor[L][¢ — 1] # 1) then

send (buddyOp, u, £ — 1, m(u)s—1, R) to u.neighbor[L][¢ — 1]

wait until receipt of (setLinkOp, neighbor, £):

u.neighbor[L][£] < neighbor

=,

else u.neighbor[L][¢] = L
if ((u.neighbor[R][¢] = L) and (u.neighbor[L][¢] = 1)) then
| break

u.maxLevel < ¢

75

N

© N0 oW

10
11
12
13
14
15
16

O R W N =

~

Algorithm 3: Node v’s message handler for messages received during the insert of new

node u.

upon receiving (getLinkOp, u, side, £):
change_neighbor(u, side, £)

upon receiving (buddyOp, u, £, val, side):

if (side = L) then otherSide <— R

else otherSide < L

if (m(v); = L) then
m(v)g < uniformly chosen random element of ¥
v.neighbor[L][{] < L
v.neighbor[R][{] + L

if (m(v)y = val) then
‘ change neighbor(u, side, £+ 1)
else
if (v.neighbor[otherSide/[l] # L) then
‘ send (buddyOp, u, val, £, side) to v.neighbor[otherSide][¢]

else
‘ send (setLinkOp, L, #) to u

Algorithm 4: change_neighbor(u, side, £) for node v

if (side = R) then cmp + <
else cmp + >
if ((v.neighbor[side][l]).key cmp u.key) then
‘ send (getLinkOp, u, side, £) to v.neighbor[side][/]
else
‘ send (setLinkOp, v, £) to u

v.neighbor(side][¢] < u

Algorithm 5: Additional messages for node v

1 upon receiving (updateOp, side, newNeighbor, £):

N

v.neighbor[side][¢] - newNeighbor

upon receiving (getMaxLevelOp) from u:
send (retMaxLevelOp, v.mazLevel) to u

5 upon receiving (getNeighbor0Op, side, £) from u:
6 send (retNeighborOp, vsides) to u

76

© 0N O TR N

time. An O(logm) time bound improves on the O(logn) bound for skip graphs when m is
much smaller than n. However, the cost of this improvement is losing support for complex
queries and spatial locality, and the improvement itself is only a constant factor unless some
machines store a superpolynomial number of resources.

Inserts can be trickier when we have to deal with concurrent node joins. Before u links
to any neighbor, it verifies that its join will not violate the order of the nodes. So if any
new nodes have joined the skip graph between w and its predetermined successor, u will

advance over the new nodes if required before linking in the correct location.

4.5.3 The delete operation

The delete operation is very simple. When node u wants to leave the network, it informs
its predecessor node at each level to update its successor pointer to point to u’s successor.
It starts at the topmost level and works its way down to level 0. Node u also informs its
successor node at each level to update its predecessor pointer to point to n’s predecessor.
If w’s successor or predecessor are being deleted as well, they pass the message on to their
neighbors so that the nodes are correctly linked up. A node does not delete itself from the
graph as long as it is waiting for some message as a part of the delete operation of another

node.

Algorithm 6: delete for existing node u

u.deleteFlag = true
for ¢ < u.maz_levels downto 0 do
if u.neighbor/R][(] # 1 then
send (deleteOp, ¢, sender) to u.neighbor|R][/]
wait until receipt of (confirmDeleteOp, £) or (noNeighborOp, £):
upon receiving (noNeighbor0Op, £):
if w.neighbor(L][(] # L then
send (setNeighborNilOp, ¢, sender) to u.neighbor[L][/]
wait until receipt of (confirmDeleteOp, £)

7

Algorithm 7: Node v’s message handler for messages received during the delete operation.

1 upon receiving (deleteOp, £, sender):

2 if (v.deleteFlag = true) then

3 | if (v.neighbor[R][¢] # L) then

4 ‘ send (deleteOp, ¢, sender) to v.neighbor[R][/]

5 | else

6 ‘ send (noNeighborQOp, £) to sender

7 else

send (findNeighbor0Op, ¢, sender) to v.neighbor[L][/]
wait until receipt of (foundNeighbor0Op, z, £):

10 | v.neighbor[L][{] + z
11 | send (confirmDeleteOp, £) to sender

12 upon receiving (findNeighbor0Op, ¢, sender):

13 if (v.deleteFlag = true) then
14 | if (v.neighbor[L][(] # 1) then
15 ‘ send (findNeighborOp, ¢, sender) to v.neighbor[L][/]
16 | else

17 ‘ send (foundNeighborOp, L, ¢) to sender

18 else

19 | send (foundNeighborQOp, v, £) to sender
20 | v.neighbor[R][{] < sender

21 upon receiving (setNeighborNilOp, 4, sender):

22 if (v.deleteFlag = true) then

23 | if (v.neighbor[L][¢] # L) then

24 ‘ send (setNeighborNilOp, ¢, sender) to v.neighbor[L][¢]
25 | else

26 ‘ send (confirmDeleteOp, £) to sender

27 else
28 | send (confirmDeleteOp, £) to sender
29 | v.neighbor[R]|[{] < L

78

Lemma 4.4 The delete operation in a skip graph S with n nodes takes expected O(logn)

messages and O(1) time.

Proof: Let X be the alphabet for the membership vectors of the nodes in the skip

graph S. With n nodes, there will be average of O(log nm) levels in the skip graph,

p = %71 At each level £, £ > 0, the node to be deleted communicates with at most two
other nodes. It takes an average of O(log nm) total messages and O(1) time as the
messages at all the levels can be sent in parallel. Thus with fixed p, a delete operation takes

O(logn) messages and O(1) time. I

During the delete operation of node u, if u’s successor or predecessor at some level are
also being deleted, then the number of message at that level is proportional to the number

of consecutive nodes being deleted.

4.5.4 Correctness of algorithms

In this section, we prove the correctness of the insert and delete algorithms given in Sec-
tion 4.5. The definition of a skip graph in Section 4.3 involves global properties of the data
structure (such as Sy,1 being a subset of S,,) that are difficult to work with in the correctness
proofs. So we start by defining a set of local constraints which characterize a skip graph.
We first prove that a data structure is a skip graph if and if only if all these constraints
are satisfied, and then we prove that these constraints are not violated after an insert and
delete operation, thus maintaining the skip graph properties. Further, these constraints
will be used for our repair mechanism as we can monitor the state of the graph by checking
these constraints locally at each node, and detecting and repairing node failures.

As explained in Section 4.5, we use L both to refer to the null pointers at the ends of
the doubly-linked lists of the skip graph, and to refer to pointers to failed nodes.

Let z be any node in the skip graph; then for all levels £ > 0:
1. fzRy # L, xRy > .

2. faxLp# 1, xLy < .

3. f xRy # 1, xRyLy = .

79

4. fxLy # 1, xLyRy = .

5. i m(z) | (£+1) =m(zRE) | (£+1) and 3j,j < k,m(z) | (£+1) =m(zR)) | (£+1),

then xRy = me. Else, zRpy1 = L.

6. If m(z) | (£+1) = m(zLE) | (£+1) and Bj,j < k,m(z) | (£+1) = m(zL]) | (£+1),

then zLgy; = fo. Else, xLyy1 = L.

As per the definition of a skip graph given in Section 4.3, all the elements in a doubly
linked list S,, (which contains all = for which w is a prefix of m(z) of length ¢) are in in-
creasing order. Constraints 1 through 4 imply that all non-edge nodes satisfy the increasing
order in the linked lists. Constraints 1 and 2 ensure that the order is locally true at every
node, whereas Constraints 3 and 4 ensure that the entire list is doubly linked correctly. The
constraints that the increasing order is satisfied locally at each node and that the list is
doubly-linked correctly, put together ensure that no element is skipped over and that the
entire list is sorted.

Constraints 5 and 6 denote how the lists at different levels are related to each other.
The successor (predecessor) of node z at level £+ 1 is always the first node to its right (left)
at level £ whose membership vector matches the membership vector of z in one additional
position. Node z is connected at level £+ 1, on the right side to a node z such that z,z € S,
and z is the nearest node greater than z in S, with m(z), = m(z),. Similarly, = is connected
at level £+ 1, on the left side to a node w such that u,z € S,,, and u is the nearest node
less than z in Sy, with m(u), = m(z),.

Define a defective skip graph as a data structure that that contains skip graph elements
but does not satisfy the definition of a skip graph; for example, it may contain out-of-order

elements, missing links, or worse.

Theorem 4.5 FEvery connected component of the data structure is a skip graph if and only

if Constraints 1 — 6 are satisfied.

Proof: We start with the reverse direction: if the constraints are not satisfied, then

some connected component of the data structure is not a skip graph. As Constraints 2, 4

80

and 6 are mirror images of Constraints 1, 3 and 5 respectively, we will only consider viola-

tions of Constraints 1, 3 and 5.

x zR,L; xR, zReL, x zR,

(@ (0 wwme () (3){o)
z zRy \/
LEVEL ¢ @@ zR¢Ly > T zRyLy <z

T zR,
TR, <z
ngLg =1
(a) Violation of Constraint 1: zR; > x. (b) Violation of Constraint 3: R;L; = x.

Figure 4.5: Violation of Constraints 1 and 3.

Figure 4.5 shows how Constraints 1 and 3 can be violated. Each violation leads to either
an unsorted or inconsistently linked list at level £, so the data structure is not a skip graph.

There are two ways in which Constraint 5 can be violated.

1. For some z and £, zRy11 = zR} but 35,5 < k,m(z) | (£ +1) = m(:vR%) I (£+1).
Let y = :sz and z = :va. As the linked list is sorted at level £, j < k = y < z, and
since y = TRz < y. Let Sy = {z|m(z) | (¢{+ 1) = w}. Then in a skip graph, z,y
and z € S,,. Since y # Ry, either y ¢ S, or the linked list at level £+ 1 is not
sorted as z < y < z. In both cases, the resulting data structure is a defective skip

graph.

2. For some z and ¢, xRp1q # a:Rf.
Asm(z) | ((+1) = m(zRpr1) | U+ 1), m(z) | £ = m(zRpy1) [£. Tt follows that
both z and xRy are in Sp,(g)pe. But then if zRpq # sch for any k, some edge in

Sm(z)le 18 missing, and the data structure is a defective skip graph.

Now we prove that every connected component of a data structure is a skip graph if
all the constraints are satisfied. We first prove that we have sorted, doubly-linked lists at
all levels using Constraints 1 through 4, and then prove that each list contains the correct

elements as per their membership vectors using Constraints 5 and 6.

81

Let z be an arbitrary element of the data structure. Let S, ; be the maximal sequence
of the form wLé, .oy Z,...,zRE where j, k > 0, such that no element of the sequence is
1. We show that this sequence is sorted and doubly-linked using induction. According
to Constraint 1, xRy > z, and according to Constraint 3, zRyLy = z. Thus the sequence
xz, xRy is sorted and doubly-linked. Similarly, according to Constraint 2, L, < z, and
according to Constraint 4, xLyR; = x. Thus the sequence z Ly, x is sorted and doubly-
linked. Let the sequence 2L} ',...,z,...,zRF™!, be a sorted, doubly-linked list. According
to Constraints 1 and 3, fo > fofl, and .’L'RfileLg = a:Rf*l. Similarly, according to
constraints 2 and 4, iL‘L% < a:L%_l, and .’ELi_lReLg = :vL%_l. Thus the maximal sequence
Spe=xL},...,x,..., xR} is sorted and doubly-linked.

We now show that if two nodes are connected at level £, they are also connected at
level 0. Suppose that Constraints 5 and 6 hold. Then, we prove that for each level £ > 0,
zRy = ng and zL, = J;L%. Clearly this is true for £ = 0 and j = 1. Suppose that
it is true for level £ — 1. Let z = 7o and let each iERé_l =1, 1 <11 < k. For each i,
yi = Yio1Re—1 = i1 RY. So y1 = yoRe—1 = yoRY, y2 = yiRe—1 = iR} = yoRP™, and
so on. Thus, y, = yoRg°+j1+j2+'“+j’“ = yoRg, where j = jo + j1 + ... + jk. But y, = zRE |
and yo = z. So xRy_1 = acRé. According to Constraint 5, zR; = R . Thus we get
TRy = :cR%. A similar proof will show that zL, = :vOL%.

We use the proof above to show that any two connected nodes are connected in the
same list at level 0. Consider a path zE1E; ... Exy where each Ej; is either Ly, or Ry,. As
proved above, there exists a path zE7' EJ” . .. E,'Cj’”y where each E] is either Ly or Ry. Thus
it follows that = and y are in the same list at level 0. Also S; o = Sy if z and y are in the
same connected component. So we get a single list S, at level 0, which consists of all the
elements in the same connected component of the data structures.

As proved above, S, is also sorted and doubly-linked. With the single list S, at level 0,
according to Constraints 5 and 6, each node x € S, is linked to its right and left at level 1
to the nearest nodes z and u respectively (if they exist), such that m(z) [1 =m(z) [1 =
m(u) [1, and u < z < z. Thus, we get || linked lists at level 1, S, = {y|m(y)o = a}, one
for each a € .. In general, at level £, we can get up to |E|£ lists, one for each w € X¢. Each

list contains all the nodes which have the matching membership vector prefix. As proved

82

above, each of these lists is also sorted and doubly-linked. Thus, if the data structure

satisfies all the constraints, it is a skip graph. i

Lemma 4.6 Inserting a new node u in a skip graph S using Algorithm 2 gives a skip graph.

Proof: Inserting a new node u in S consists of two stages: inserting u in level 0 using
a search operation, and inserting u in levels £ > 0 using the neighbors of u at level £ — 1.
We consider the case where the introducing node’s key is less than u’s key; the other case
is similar so we omit those details here. Also, we only prove that Constraints 1, 3 and 5 are
satisfied as Constraints 2, 4 and 6 are mirror images of Constraints 1, 3 and 5 respectively.

The search operation started by u (line 14 of Algorithm 2) returns the largest node s
less than u (line 17 of Algorithm 1), and u sends a getLinkOp message to s (line 21 of
Algorithm 2). One of the following two cases occur: Either s sets sR) = u > s (line 7 of
Algorithm 4), maintaining Constraint 1. Or, if additional nodes are inserted between u and
s, and sRy < u (line 3 of Algorithm 4), then s passes the getLinkOp message to sRy. As
the getLinkOp message is only passed to nodes whose key is less than that of u, eventually
it reaches some node ¢ where the message terminates and ¢ Ry = w > t, maintaining
Constraint 1. Also as u sets uLy = s < u or uLy =t < u' (line 23 of Algorithm 2), either
sR{Lj = s or tRyL{ = t satisfying Constraint 3. In the absence of a suitable s, no pointers
are changed and Constraints 1 and 3 are satisfied as the pointer values remain unchanged
from before the insert.

Node u also determines the initial right neighbor of s, say z (lines 19 and 20 of Al-
gorithm 2) and sends a getLinkOp message to z (line 24 of Algorithm 2). Similar to the
earlier getLinkOp message, either z sets 2z'Lyg = u < z (line 7 of Algorithm 4), or passes
the message on to zLg if it is greater than u (line 3 of Algorithm 4). As the getLinkOp
message is only passed to nodes whose key is greater than that of u, eventually it reaches
some node y where the message terminates and y'Ly = u < y. Node u sets u'Ry = z > u
or u'Ry =y > u (line 26 of Algorithm 2), maintaining Constraint 1. As z sets zLj = u < z
or y sets yLj = u < y (line 7 of Algorithm 4), uR{L{ = u satisfying Constraint 3. In the
absence of a successor, u simply sets uR{, = L (line 2 or 26 of Algorithm 2), thus trivially

satisfying Constraints 1 and 3.

83

Node u uses its neighbors at level £, (£ > 0), to find its neighbors at level £ + 1. Node
u sends a buddyOp message to uRy > u (line 32 of Algorithm 2), and this message is
passed to the right to successive nodes uRf > u, k > 1, until it reaches a node y such that
m(u) [(£+1) =m(y) | (£+1), and u sets uR)_; =y > u (line 34 of Algorithm 2), satisfying
Constraint 1. As this message is only sent to the right, u can only connect on its right to
nodes greater than itself. Asy sets yLy , = u <y, uRy, Ly , = u, satisfying Constraint 3.
Similarly, u also sends a buddyOp messages to its left to uLy < u (line 37 of Algorithm 2);
as this message is only sent to nodes s less that u, it ensures that sR} 41 = u > s, satisfying
Constraint 1. As u sets uLj,, = s, sRy L , = s satisfying Constraint 3.

As wu only queries the nodes z in the same list as itself at level £, it is ensured that
m(u) [£ =m(z) | £. Further, we see that u only links to a node z such that m(u), = m(z),
(line 10 of Algorithm 3). Thus u can only link to z at level (£+1) if m(u) [(£+1) =m(2) |
(£+ 1). Having seen that u only links to nodes with the correct membership vector prefix,
it only remains to show that u links to the nearest such nodes at each level £ > 0. We see
that u starts looking for it successor at level £ + 1 from u Ry (line 31 of Algorithm 2). Node
uRy is either the successor for node u at level £+ 1 (line 10 of Algorithm 3), or it passes
the message to its successor (line 14 of Algorithm 3). As the search for uRy.1 proceeds
one node at a time along S;,(,)}(¢), it is guaranteed to find the nearest node greater than
u, whose membership vector matches m(u)y. Thus uRpi 1 = uRf, for the smallest k& > 0,
satisfying Constraint 5.

We note that with concurrent inserts, additional nodes may get linked at some level
between u and its predetermined neighbors, found using either the search operation (for
level 0) or the buddyOp messages (for levels greater than 0). In each case, we see that when
some old node receives a getlinkOp messages to link to u, it verifies that pointing to u will
maintain the skip graph node order. Otherwise, it passes the message to its appropriate
neighbor (line 4 of Algorithm 4). This is explained in detail above, and it ensures that
u links to the correct nodes at each level. So the constraints are maintained even with
concurrent inserts in the skip graph.

Thus when all the concurrent insert operations are completed, we get a skip graph. i

84

Lemma 4.7 Deleting node u from a skip graph S using Algorithm 6 gives a skip graph.

Proof: Deleting a node u from a skip graph S consists of two stages at each level £:
finding a node to the right of u that is not being deleted, and then finding a node to the
left of w that is not being deleted to link these two nodes together.

Node u sends a deleteOp message to its successor uRy (line 4 of Algorithm 6). As long
as this message is received by a node that is itself being deleted (line 2 of Algorithm 7),
it is passed on to the right to successive nodes uRg, uR? ... (line 4 of Algorithm 7), until
it reaches some node z > w which is not being deleted. Node z sends a findNeighborOp
message to zLy to determine its new left neighbor (line 8 of Algorithm 7). As long as this
message is received by a node that is itself being deleted (line 13 of Algorithm 7), it is passed
on to the left to successive nodes sz, sz’ ... (line 15 of Algorithm 7), until it reaches some
node s < u < z which is not being deleted. Node s sends a foundNeighborOp message back
to z and sets SR, = z > s, satisfying Constraint 1 (lines 19 and 20 of Algorithm 7). Upon
receipt of this message (line 9 of Algorithm 7), z sets zLj, = s < z (line 10 of Algorithm 7),
satisfying Constraint 2. Further, as 2L, R, = z and sRLj, = s, Constraints 3 and 4 are also
satisfied. Nodes z and s are in the same list at level £, so m(z) | £ = m(s) [¢, and they
are also in the same list at level £ — 1. As all the nodes between them will be eventually
deleted, they are nearest nodes with matching membership vectors to be linked at level £,
satisfying Constraints 5 and 6.

If no suitable node s exists, the last node on the left of z that is being deleted, sends
a foundNeighborOp to z (line 17 of Algorithm 7). Node z sets zLj = L (line 10 of Algo-
rithm 7), thus trivially satisfying Constraints 2, 4 and 6. If no suitable node z exists, the
last node to the right of u that is being deleted, informs u of that (line 6 of Algorithm 7).
Node u sends a setNeighborNilOp message to uLg (line 8 of Algorithm 6). which is passed
to the left until it reaches a node ¢ that is not being deleted (line 24 of Algorithm 7). Node ¢
sets gRj, = L (line 29 of Algorithm 6), once again trivially satisfying Constraints 1, 3 and 5.
If no suitable node ¢ exists, then no link changes are made at all, and all the constraints
are satisfied as before.

We note that with concurrent deletes, additional nodes may get deleted at some level

85

between u and its existing neighbors. We see that when some neighboring node receives a
message for the delete operation, it verifies that it is not being deleted itself. If so, it passes
the message on to its neighbor as explained in detail above. This ensures that only nodes
on either side of u that are not being deleted link to each other.

Thus, after all the concurrent delete operations have been completed, we get a skip

graph. 11

4.6 Applications of skip graphs

As skip graphs do not destroy the ordering of the keys, they can be easily used to support

applications such as versioning and user-level replication which are explained below.

Versioning One application which is easily implemented using a skip graph is a version
control system, for example, maintaining daily news articles as shown in Figure 4.6. The
user can request for the latest version and in the absence of that, the system can seamlessly
provide the most recent copy available, using the simple search mechanism. In addition,
the user can formulate complex queries such as finding the latest article before a particular

date or finding all articles within a specified time frame.

LEVEL O

-— news:01-01-2003 news:02-02-2003 news:03-03-2003 news:04-04-2003 (~—

Figure 4.6: Using a skip graph for a versioning application. The user can look for the latest
news article, for example, news:04-05-2003 (where 04-05-2003 is the date on the day of
the request and therefore is the most recent date). As that is not present, the system finds
the next most recent article dated 04-04-2003.

User-level replication Skip graphs can be organized to handle flash crowds, where the
temporary popularity of a resource causes a very large request volume. Recent examples
of flash crowds include overwhelming demand for news sites such as CNN and MSNBC
during the terrorist attacks in the USA on September 11, 2001. Between 9:26 a.m. and

10:06 a.m., the number of searches for “CNN” on the search engine Google [46] averaged

86

approximately 6000 queries per minute!. The flash crowd phenomenon is also popularly
known as the “slashdot effect” because of the stirs caused by several stories of the popular
web site http://www.slashdot.com.

We can utilize user-level replication to alleviate the problem of hot spots caused due
to flash crowds. Suppose there is a very popular resource, for example, the web page
http://www.cnn.com. To avoid a hot spot, the machine that hosts the resource can make
several copies of it by appending identifiers at the end of key and adding these new resources
as nodes to the data structure. If the resources are uniformly distributed among the ma-
chines, it is highly likely that these new resources are assigned to different machines in the
system. Any user can run a query of the form www.cnn.com* and reach one of the replicas,
as shown in Figure 4.7. Depending on where the search starts, different requests will go
to different replicas, and effectively provide hot spot management by not overloading any
one particular replica. In addition, it also provides survivability, so if a few replicas fail,
the others are still available in the network. This mechanism can be used either for replicas
of the resource addresses, or for replicas of the resources themselves. The first approach
alleviates the load on the peer that maintains the address of the original resource whereas

the second one alleviates the load on the peer that actually hosts the resource.

<——{ www.cnn.coml ‘ ‘ WWW.cnn.com2 %—» <——’—‘!——>
u /—““’&“'““‘3

i

E } WWW.cnn.com2 H WWW.cnn.com3 %—»
Y Y Y

<—+ H Www.cnn.coml H WWW.cnn.com2 H WWW.cnn.com3 H %—»

Figure 4.7: Using a skip graph for user-level replication.

We note that these applications can also be implemented using DHTs but they may
require an additional application layer and the associated maintenance costs, over the native

data structure.

tDetails of these numbers can be found at: http://www.google.com/press/zeitgeist/9-11.html.

87

4.7 Fault tolerance

In this section, we describe some of the fault tolerance properties of a skip graph with
alphabet {0,1}. Fault tolerance of related data structures, such as augmented versions of
linked lists and binary trees, has been well-studied and some results can be seen in [83, 8].
In Section 4.8, we give a repair mechanism that detects node failures and initiates actions
to repair these failures. Before we explain the repair mechanism, we are interested in the
number of nodes that can be separated from the primary component by the failure of other
nodes, as this determines the size of the surviving skip graph after the repair mechanism
finishes.

Note that if multiple nodes are stored on a single machine, when that machine crashes,
all of its nodes vanish simultaneously. Our results are stated in terms of the fraction
of nodes that are lost; if the nodes are roughly balanced across machines, this will be
proportional to the fraction of machine failures. Nonetheless, it would be useful to have
a better understanding of fault tolerance when the mapping of resources to machines is
taken into account; this may in fact dramatically improve fault tolerance, as nodes stored
on surviving machines can always find other nodes stored on the same machine, and so need
not be lost even if all of their neighbors in the skip graph are lost.

We consider two fault models: a random failure model in which an adversary chooses
random nodes to fail, and a worst-case failure model in which an adversary chooses specific
nodes to fail after observing the structure of the skip graph For a random failure pattern,
experimental results, presented in Section 4.7.1, show that for a reasonably large skip graph
nearly all nodes remain in the primary component until about two-thirds of the nodes
fail, and that it is possible to make searches highly resilient to failures even without using
the repair mechanism, by the use of redundant links. For a worst-case failure pattern,
theoretical results, presented in Section 4.7.2, show that even a worst-case choice of failures
causes limited damage. With high probability, a skip graph with n nodes has an Q(@)
expansion ratio, implying that at most O(f-logn) nodes can be separated from the primary
component by f failures. We do not give experimental results for adversarial failures as

experiments may not be able to identify the worst-case failure pattern.

88

4.7.1 Random failures

In our simulations, skip graphs appear to be highly resilient to random failures. We con-
structed a skip graph of 131072 nodes, where each node was had a unique label from
[1,131072]. We progressively increased the probability of node failure and measured the size
of largest connected component of the live nodes as well as the number of isolated nodes
as a fraction of the total number of nodes in the graph. As shown in Figure 4.8, nearly all
nodes remain in the primary component even as the probability of individual node failure
exceeds 0.6. We also see that a lot of nodes are isolated as the failure probability increases

because all of their immediate neighbors die.

1.1
€ 1.0
2
© 0.9 | sol at ed nodes
g Primary conponent --———-—
5 0.8
>0.7
% 0.6 '
o \
~ 0.5 \
%] l
3 \
B 0.4 ‘/
=)
- 0.3 i
o \
T 0.2
°
© 0.1

0.0 .

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Probability of node failure

Figure 4.8: The number of isolated nodes and the size of the primary component as a
fraction of the surviving nodes in a skip graph with 131072 nodes.

For searches, the fact that the average search involves only O(logn) nodes establishes
trivially that most searches succeed as long as the proportion of failed nodes is substantially
less than O(@). By detecting failures locally and using additional redundant edges, we
can make searches highly tolerant to small numbers of random faults.

Some further experimental results are shown in Figure 4.9. In these experiments, each
node had additional links to up to five nearest successors at every level. A total of 10000
messages were sent between randomly chosen source and destination nodes, and the fraction

of failed searches was measured. We see that skip graphs are quite resilient to random fail-

ures. This plot appears to contradict the one shown in Figure 4.8, because we would expect

89

T T
1 successor —+—
0.9 |2 successors --—+--
3 successors -+
0.8 |4 successors -+
0

5 successors ——+-

o
w ~ o

e
N
\

Fraction of failed searches
o

.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Probability of node failure

Figure 4.9: Fraction of failed searches in a skip graph with 131072 nodes and 10000 messages.
Each node has up to five successors at each level.

all the searches to succeed as long as all live nodes are in the same connected component.
However, once the source and target nodes are fixed, there is a fixed, deterministic path
along which the search proceeds and if any node on this path fails, the search fails. So there
may be some path between the source and the destination nodes, putting them in the same
connected component, but the path used by the search algorithm may be broken, foiling the
search. This suggests that if we use smarter search techniques, such as jumping between
the different skip lists that a node belongs to, we can get much better search performance
even in the presence of failures.

In general, skip graphs do not provide as strong guarantees as those provided by data
structures based on explicit use of expanders such as censorship-resistant networks [35, 102,
28]. But we believe that this is compensated for by the simplicity of skip graphs and the

existence of good distributed mechanisms for constructing and repairing them.

4.7.2 Adversarial failures

In addition to considering random failures, we are also interested in analyzing the per-
formance of a skip graph when an adversary can observe the data structure, and choose
specific nodes to fail. Experimental results may not even be able to identify these worst-case
failure patterns. So in this section, we look at the expansion ratio of a skip graph, as that

gives us the number of nodes that can be separated from the primary component even with

90

adversarial failures.

Let G be a graph. Recall that the expansion ratio of a set of nodes A in G is |0A|/|A],
where |0 A| is the number of nodes that are not in A but are adjacent to some node in A.
The expansion ratio of the graph G is the minimum expansion ratio for any set A, for which
1 < |A| € n/2. The expansion ratio determines the resilience of a graph in the presence
of adversarial failures, because separating a set A from the primary component requires all
nodes in A to fail. We will show that skip graphs have Q(@) expansion ratio with high
probability, implying that only O(f -logn) nodes can be separated by f failures, even if the
failures are carefully targeted.

Our strategy for showing a lower bound on the expansion ratio of a skip graph will be
to show that with high probability, all sets A either have large dyA (i.e., many neighbors
at the bottom level of the skip graph) or have large d;A for some particular £ chosen based
on the size of A. Formally, we define dyA as the set of all nodes that are not in A but are
joined to a node in A by an edge at level £. Our result is based on the observation that

0A =J,0,A and |6A| > max, |0,A|. We begin by counting the number of sets A of a given

size that have small §yA.

Lemma 4.8 In a n-node skip graph with alphabet {0,1}, the number of sets A, where

|Al =m < n and |6pA| < s, is less than 3°_] (m+1) ("_m_l).

r r—1

Proof: Without loss of generality, assume that the nodes of the skip graph are num-
bered from 1 to n. Given a subset A of these nodes, define a corresponding bit-vector x by
letting z; = 1 if and only if node i is in A. Then §yA corresponds to all zeroes in x that are
adjacent to a one.

Consider the extended bit-vector ' = 1z1 obtained by appending a one to each end of
z. Because z’ starts and ends with a one, it can be divided into alternating intervals of
ones and zeroes, of which r + 1 intervals will consist of ones and r will consist of zeroes
for some r, where r > 0 since = contains at least one zero. Observe that each interval of
zeroes contributes at least one and at most two of its endpoints to dgA. It follows that
r < [6pA| < 2r, and thus any A for which |§pA| < s corresponds to an z for which z/

contains r < |§pA| < s intervals of zeroes.

91

Since there is at least one A with 7 < s but |§pA| > s, the number of sets A with
|0pA| < s is strictly less than the number of sets A with » < s. By counting the latter
quantity, we get a strict upper bound on the former.

We now count, for each r, the number of bit-vectors =’ with n — m zeroes consisting of
r + 1 intervals of ones and r intervals of zeroes. Observe that we can characterize such a
bit-vector completely by specifying the nonzero length of each of the r + 1 all-one intervals

together with the nonzero length of each of the r all-zero intervals. There are m + 2 ones

m+2—1) — (m—l—l)

that must be distributed among the r 4+ 1 all-one intervals, and there are (T 11 ,

ways to do so. Similarly, there are n — m zeroes to distribute among the r all-zero intervals,

n—m—1

r—1) ways to do so. Since these two distributions are independent, the

and there are (

m+1) (n—m—l) .

total count is exactly (, r—1

Summing over all r < s then gives the upper bound an;i (m;"l) (";Tl_l) |

For levels £ > 0, we show with a probabilistic argument, that |d,A| is only rarely small

Lemma 4.9 Let A be a subset of m < n/2 nodes of a n-node skip graph S with alphabet
{0,1}. Then for any ¢, Pr[|6,A| < 3 -2"] < 2(L%2;hJ)(2/3)m

Proof: The key observation is that for each b in {0,1}, if A contains a node u with
m(u) | £ = b and A’s complement S — A contains a node v with m(v) | £ = b, then there
exist nodes u’' € A and v € S — A along the path from u to v in Sy, such that «' and v/
are adjacent in Sp. Furthermore, since such pairs are distinct for distinct b, we get a lower
bound on §A by computing a lower bound on the number of distinct b for which A and
S — A both contain at least one node in S.

Let T(A) be the set of b € {0,1}¢ for which A contains a node of Sy, and similarly for
T(S — A). Then

IA

> Pr[T(A) C B]

BCS,|B|=| 22" |

(157 e

Pr [|T(A)| < %-#]

IA

92

and by the same reasoning,

£l
Pr |T(S—A)|<§-2f] < <[;2hJ>(2/3)IS—A.

But if both T'(A) and T'(S — A) hit at least two-thirds of the b, then their intersection must
hit at least one-third, and thus the probability that T'(A) NT'(S — A) < % - 2% is at most
(L%Q-;” J) ((2/3)141 + (2/3)15=41), which is in turn bounded by Q(L%?;h J)(2/3)|A\ under the

assumption that [A4] < |S — A|. 1

We can now get the full result by arguing that there are not enough sets A with small
|00A| (Lemma 4.8) to get a non-negligible probability that any one of them has small |§;A|
for an appropriately chosen £ (Lemma 4.9). Details are given in the proof of Theorem 4.10

below.

Theorem 4.10 Let ¢ > 6. Then a skip graph with n nodes and alphabet {0,1}, has an

Cc

expansion ratio of at least with probability at least 1 — an® ¢, where the constant

_r
clogg o

factor a does not depend on c.

Proof: We will show that the probability that a skip graph S with n nodes does not

5—c

have the given expansion ratio is at most an®~¢, where a = 31. The particular value of

a = 31 may be an artifact of our proof; the actual constant may be smaller.
Consider some subset A of S with |A| =m < n/2. Let s = clog’;‘ﬂn = mlglg’f), and let

s1 = [s]. We wish to show that, with high probability, all A of size m have |0A| > s;. We

will do so by counting the expected number of sets A with smaller expansion. Any such set
must have both |§pA| < s and |0,4| < s for any ¢; our strategy will be to show first that
there are few sets A in the first category, and that each set that does have small §y A is very
likely to have large 6yA for a suitable 2.

By Lemma 4.8, there are at most >_°17" (™) (" ™ 1) sets A of size m for which |§pA| <

T r—1
s1. It is not hard to show that the largest term in this sum dominates. Indeed, for r < s1,

T L _r+1
m+1—r n—m-—r’

Gy Vi venio l G

the ratio between adjacent terms (., 1 o .) equals and

93

since r < %m and m < %, this product is easily seen to be less than % It follows that

s1—1 00
m+1\/n—m-—1 m+1\/n—m-1 .
2—Z

Z(T)(r—1) < (51—1)< 51— 2)g

r=1
_ m+1\/n—m-—1
N 31—1 31—2
< n2(31*1)

2m
—_ 2m 1g(3/2)
< 'n/ZS —n610g3/2n =2 ¢

Now let £ = [lgs +1g3], so that s < %25 < 2s.

Applying Lemma 4.9, we have

Prilfed| <s]] < Pr [|6hA| <1 -zh]

2y

< 2 (236:!9- 1) 2/3)"
< 2-(65)*F1(2/3)",

N

and thus

3 Pr[|6eA| < s] < 275 L9 (65)25F1 (2/3)™.
ACS,|Al=m,|doA|<s

Taking the base-2 logarithm of the right-hand side gives
2m1g(3/2
% 14 (25 + 1) 1g(6s) — m1g(3/2)

2m1g(3/2) T14 (3mlg(3/2)

lgn — m12(3/2
. clan)gn m1g(3/2)

= 14+m (2 - 1) 1g(3/2).

It follows that the probability that there exists an A of size m, for which both |dpA| and

|0¢A| are less than s, is at most 2 to the above quantity, which we can write as 2™ where

b= (3/2)6/c1),

To compute the probability that any set has a small neighborhood, we sum over m. By

definition of the expansion ratio, we need only consider values of m less than or equal to

94

n/2; however, because every proper subset A of S has at least one neighbor, we need to
consider only m > clogz y n. So we have

n/2
Pr [S has expansion ratio less than 1] < Z 20

clogg/an

m=[clogg sy n]

< 92 (i bz) (bfclog3/2 n])
1=0

< L . b010g3/2n
- 1-b
2 clogs/y b
= — 7 3/2
1-5
= %b . nc(%il)
2 5—c
= — N
1-—
< 31-n57¢,

where the last inequality follows from the assumption that ¢ > 6. |l

4.8 Repair mechanism

Although a skip graph can survive a few disruptions, it is desirable to avoid accumulating
errors. A large number of unrepaired failures will degrade the ideal search performance
of a skip graph. Replication alone may not guarantee robustness, and we need a repair
mechanism that automatically heals disruptions. Further, as failures occur continuously,
the repair mechanism needs to continuously monitor the state of the skip graph to detect
and repair these failures. The goal of the repair mechanism is to take a defective skip graph
and repair all the defects.

We describe the repair mechanism as follows: In Section 4.8.1, we show that the first
two skip graph constraints, given in section 4.5.4, are always preserved in any execution of
the skip graph. In Section 4.8.2, we show how the remaining constraints can be checked
locally by every node, and give algorithms to repair errors which may exist in the data
structure. In Section 4.8.3, we prove that the repair mechanism given in Section 4.8.2

repairs a defective skip graph to give a defectless one. We note that the repair mechanism

95

is not a self-stabilization mechanism in the strong sense because it will not repair an
arbitrarily linked skip graph and restore it to its valid state. Instead, we see that certain
defective configurations are impossible given the particular types of failures we consider.
Thus the repair mechanism only repairs those failures that occur starting from a defectless

skip graph.

4.8.1 Maintaining the invariant

We again list the constraints that describe a skip graph, as given in Section 4.5.4. Let = be

any node in the skip graph; then for all levels £ > 0:

1. fzRy # L, xRy > .
2. faxLp# 1, Ly < .
3. If xRy # 1, xRyLy = .
4. fzxLy # 1, xLyRy = x.

5. i m(z) | (£+1) =m(zRE) | (€4 1) and 35,5 < k,m(z) | (£+1) = m(zR)) | (£+1),

then xRy 1 = a:Rf. Else, zRpy1 = L.

6. If m(z) | (L+1) = m(zLE) | (€+1) and Fj,§ < k,m(z) | (£+1) = m(zL)) | (£+1),

then zLyy; = J;Lf. Else, zLyy1 = L.

We define Constraints 1 and 2 as an invariant for a skip graph as they hold in all
states even in the presence of failures. Constraints 3 to 6 may fail to hold with failures,
but they can be restored by the repair mechanism. We call Constraints 3 and 4 the R and
L backpointer constraints respectively, and Constraints 5 and 6 the R and L inter-level
constraints respectively. Each node periodically checks to see if its backpointer or inter-
level constraints have been violated. If it discovers an inconsistent constraint, it initiates
the repair mechanism explained in Section 4.8.2.

We consider the failure of some node z as an atomic action which eliminates z from
the skip graph, and effectively sets the corresponding pointers to it to L. If there are

any pending messages to other nodes for them to change their pointers to point to z,

96

when the messages are delivered, the corresponding pointers are set to L. In an actual
implementation, each node y will periodically check to see if its neighbors at each level £ are
alive, and in absence of a response, it will set yRy = | or yLy = L. For the purposes of our
proofs however, we will consider that when a node fails, the pointers to it are atomically set
to L. It is possible that a node will detect its failed neighbors before it has to initiate some
action, thus setting the pointers to 1 anyway. If it does not, we can ensure that a node
checks that its neighbors at level £ are alive before it processes a message that it receives
for level 4.

We use zLj and zR) etc to denote the value of node z’s predecessor and successor
respectively after some operation has occurred.

We prove that the invariant is maintained for the insert and delete operations in the pres-
ence of node failures. Then we give a repair mechanism that uses the invariant constraints

to repair any violated backpointer or inter-level constraints due to node failures.
Lemma 4.11 Failures preserve the invariant when no operation is in progress.

Proof: Suppose that the invariant holds in the absence of any failures. If a node z has
a failed successor or predecessor at level i, we consider R, = L or zL, = L respectively,
which trivially satisfies Constraints 1 and 2. Thus, for all nodes y and all levels ¢, yR,
and yLj are either equal to their previous values or they are set to L, and the invariant is

maintained. 1

Lemma 4.12 The invariant is maintained during an insert operation even in the presence

of failures.

Proof: Suppose that the invariant holds prior to the insert operation. We consider each
link change during an insert operation and prove that this does not violate Constraint 1; we
omit the details for Constraint 2 as it is a mirror image of Constraint 2. We also consider
only the case where the introducing node s is less than the new node u that is being added
as the other case is similar. The successor link changes in Algorithm 2 (and its subroutine

Algorithm 4) during the insert operation are as follows:

97

e Line 23: Node u sends a getLinkOp message to s (line 21 of Algorithm 2). Node
s either returns a setLinkOp message to u (line 6 of Algorithm 4), or passes the
message to sLy (line 4 of Algorithm 4) if 4 < s. The latter case occurs when a
new node has been inserted between s and sLy during concurrent inserts. Thus u’s
original getLinkOp messages is only passed to nodes smaller than u, and u receives
the corresponding setLinkOp from a node p smaller than itself. Thus pRy = u > p
(line 7 of Algorithm 4). If some node fails in this process or no suitable predecessor

exists, all R links remain unchanged, thus satisfying Constraint 1.

e Line 26: Node u sends a getLinkOp message to sRy > u (line 21 of Algorithm 2).
Node sRy either returns a setLinkOp message to u (line 6 of Algorithm 4), or passes
the message to sR% (line 4 of Algorithm 4) if sRy < u. The latter case occurs when
a new node has been inserted between s and sRy during concurrent inserts. Thus u’s
original getLinkOp messages is only passed to nodes greater than itself, and it receives
the corresponding setLink0Op from a node v greater than itself. Thus uRy = v > u. If
some node fails in this process or no suitable successor exists, uR{, = L, thus satisfying

Constraint 1.

e Line 34: For level £ > 0, u sends a buddyOp message to uR; > u (line 32 of Algo-
rithm 2). If m(uRy); = m(u)s, then uRy sends a setLinkOp message to u (line 6
of Algorithm 4), and uR, 1 = uly > u. Else, uRy sends the buddyOp message to
uR? (line 4 of Algorithm 4). Node u’s original buddyOp message is only sent to nodes
greater than itself, and it receives the corresponding setLinkOp message only from a
node z greater than itself. Thus uR) 1 = 2 > u. If some node fails in this process or

no suitable successor exists, uR) 1 = -L, thus satisfying Constraint 1.

e Line 39: For level £ > 0, u sends a buddyOp message to uLy < u (line 32 of Algo-
rithm 2). If m(uLy)e = m(u)g, then uL, sends a setLinkOp message to u (line 6 of
Algorithm 4), and uL/R), +1 = u > uly. Else, uly sends the buddyOp message to
uL? (line 4 of Algorithm 4). Node u’s original buddyOp message is only sent to nodes
smaller than itself, and it receives the corresponding setLinkOp message only from a

node s smaller than itself. Thus sR;,; =u < s (line 7 of Algorithm 4). If some node

98

fails in this process or no suitable predecessor exists, all R links remain unchanged,

thus satisfying Constraint 1.

Thus the invariant is maintained during an insertion, even in the presence of failures. il

Lemma 4.13 The invariant is maintained during a delete operation even in the presence

of failures.

Proof: Suppose that the invariant holds prior to the delete operation. We consider
each link change during a delete operation and prove that this does not violate Constraint 1;
we omit the details for Constraint 2 as it is a mirror image of Constraint 2. The successor

links changes in Algorithm 7 during the delete operation of node u are as follows:

e Line 20: At each level £ > 0, u sends a deleteOp message to uRy (line 4 of Algo-
rithm 6). If uRy is being deleted, it passes the message to uR? (line 4 of Algorithm 7).
This message is only passed to nodes greater than u until it reaches a node v > u
which is not being deleted. Node v sends a findNeighborOp message to vL, (line 8
of Algorithm 7), which is passed to the left (line 15) of Algorithm 7 until it reaches
a node s < u which is not being deleted. Node s sends a foundNeighborOp to v
(line 19 of Algorithm 7), and it sets sRj, = v > s. If no suitable s is found (line 17 of

Algorithm 7), all the R links remain unchanged, thus satisfying Constraint 1.

e Line 29: If no suitable v, which is not being deleted, is found (line 6 of Algorithm 7),
u sends a setNeighborNilOp to uL; < u (line 8 of Algorithm 7). This message is
passed to the left (line 24 of Algorithm 7) until it reaches some node s < u which is
not being deleted. Node s sets sR, = L (line 29 of Algorithm 7). If no suitable s
is found (line 17 of Algorithm 7), all the R links remain unchanged, thus satisfying

Constraint 1.
Thus the invariant is maintained during a deletion, even in the presence of failures. il

Combining Lemmas 4.11, 4.12 and 4.13 directly gives Theorem 4.14.

Theorem 4.14 The invariant is maintained throughout any execution of a skip graph, even

with failures.

99

4.8.2 Restoring invalid constraints

The backpointer and inter-level constraints are violated during insert and delete operations
as well as when a node fails. However, we will see that the repair mechanism needs to be
triggered only for constraint violations caused due to failures, and not during the insert
and delete operations. We give a repair mechanism in which each node periodically checks
Constraints 3 to 6 and initiates actions to fix invalid constraints due to node failures.

Although Constraints 3 to 6 may be violated midway during an insert or a delete oper-
ation, once all the pending operations are completed, these constraints are satisfied. Thus
we observe that the repair mechanism is required to restore these constraints only in case
of node failures. When a node fails during an insert or a delete, it leads to violations of the
backpointer and inter-level constraints of its neighbors. Each node also periodically checks it
backpointer and inter-level constraints. In Algorithm 8, node x checks its backpointer con-
straints by sending checkNeighborOp messages to its neighbors at all levels (lines 3 and 5).
Similarly, each node checks its inter-level constraints as explained in Section 4.8.2.2.

As shown in Figure 4.10, when node y fails during an insert at level 2 (after having
successfully inserted itself at levels 0 and 1) or during a delete at level 1 (after having
successfully deleted itself from Level 2), its neighbors z and z detect this failure. With
the failure of y, x and z will detect inconsistencies in their constraints and initiate the
mechanism to repair them. We prove that it is sufficient to detect and repair the violated
constraints to restore the skip graph to its defectless state.

The repair mechanism is divided into two parts: the first part is used to repair the
invalid backpointer constraints, and the second part is used to repair invalid inter-level

constraints.

4.8.2.1 Restoring backpointer constraints

Each node z periodically checks that zR;L; = x when xRy # 1, and that zLy,R; = x when
xzLy # 1 for all levels 0 < £ < x.maxLevel. It triggers the backpointer constraint repair

mechanism (Algorithm 8) if it detects an inconsistency.

Lemma 4.15 In the absence of new failures, inserts, and deletes, the repair mechanism

100

T z

Level 2 [O—0
— TO N | : (O Detects failed successor
PN T % constraint
Level 1 N AN AN N
S A N A A
Level 0 O-O-CLrO0-00C0

Yy

"} Failed node y

Figure 4.10: Violation of backpointer and inter-level constraints when a node fails half-way
through an insert or delete operation. Observe that zRy # =7, for any j > 1, and zLy # 2k
for any k£ > 1.

Algorithm 8: Algorithm for repairing invalid backpointer constraints for node v.

1 for i < v.maz_levels downto 0 do
2 | if (v.neighbor[L][i] # 1) then
3 ‘ send (checkNeighborOp, R, v, i) to v.neighbor|L][4]

a | if (v.neighbor|R][i] # L) then
5 ‘ send (checkNeighborOp, L, v, i) to v.neighbor[R][7]

6 upon receiving (checkNeighborOp, side, newNeighbor, £):
7 if (side = R) then
8 cmp — <

9 | otherSide < L

10 else
11 cmp — >
12 | otherSide «+ R

13 if (v.neighbor[side][t] # newNeighbor) then
14 | if ((v.neighbor[side/[l] = 1) and (v cmp newNeighbor)) then

o

15 v.neighbor|side][/] <— newNeighbor

16 send (checkNeighborOp, otherSide, v, £) to newNeighbor

17 | else if ((v.neighbor[side][l] # 1) and (v.neighbor[side][t] cmp newNeighbor)) then
18 ‘ send (checkNeighborOp, side, newNeighbor, £) to

19 | else

20 send (checkNeighborOp, otherSide, newNeighbor, £) to v.neighbor|side][¢]

21 send (checkNeighborOp, otherSide, v, £) to newNeighbor

22 send (checkNeighborOp, side, v.neighbor[side][¢], £) to newNeighbor

23 v.neighbor|side][¢] - newNeighbor

101

described in Algorithm 8 repairs any violated backpointer constraint without losing existing

connectivity.

Proof: We prove that Algorithm 8 repairs the violated backpointer constraints for
a single node without losing existing connectivity. We concentrate on the repair of the R
links as the case for L links is symmetric.

The violations of Constraint 3 for node v at level ¢ are as follows:

1. vRy = z > v but 2L, = 1: Node v sends (checkNeighborOp, L, v, £) to z (line 5 of
Algorithm 8). As zLy = L and z > v, z sets zL}, = v (line 15 of Algorithm 8). Thus

after Algorithm 8 finishes, vR)Lj = v, restoring Constraint 3.

2. vRy = z > v but zLy = y > v: Node v sends (checkNeighbor0p, L, v, £) to z (line 5 of
Algorithm 8). As zLy =y > v, z passes the message on to y (line 18 of Algorithm 8).
As long as this message reaches some node y > v such that yL, > v, y will pass it on
to yLy, until it reaches a node z > v such that xLy < v < z or xLy = L. Then z sets
zLj = v < z (lines 15 or 23 of Algorithm 8). Node z also sends (checkNeighbor0Op,
R, z, £) to v (line 16 or 21 of Algorithm 8). Upon receiving that message, v sets

vRj, = . Thus after Algorithm 8 finishes, vR},L) = v, restoring Constraint 3.

3. vRy = z > v but 2Ly = u < v: Node v sends (checkNeighborOp, L, v, £) to z (line 5
of Algorithm 8). As zLy = u < v, z sets zLj, = v < z (line 20 of Algorithm 8). Thus

after Algorithm 8 finishes, vR)Lj = v, restoring Constraint 3.

We prove that the backpointer constraint repair mechanism does not lose any existing
connectivity in the skip graph, i.e, if a path between nodes v and z used to exist before the
repair mechanism was initiated, a path will still exist after the repair mechanism operations
finish. We consider the case where a node v changes its successor pointer to a node z and
points to another node y; we omit the case where v changes its predecessor pointer as it
is similar to this case. Node v updates its successor pointer to some node z at level £, to
point to some other node y, only when vRy, = z > y > v (line 23 of Algorithm 8). Node
v also sends messages to (i) z to update its predecessor pointer to point to y (line 20 of

Algorithm 8), (ii) y to update its predecessor pointer to point to v (line 21 of Algorithm 8)

102

and, (iii) y to update its successor pointer to point to z (line 22 of Algorithm 8). When
these messages are delivered, vRj = y and yR), = z. Thus the path v—z is now replaced by

a longer path v—y—z, and no existing connectivity is lost. il

It is possible that a node x detects a failed backpointer constraint if it checks it while
some node y is in the middle of its insert operation. Suppose that zR;, = z but zL;, = y
because y is yet to connect to z. When z sends a checkNeighborOp message to z, it
gets passed to y, which then links to z and asks z to link to it (both through the repair
mechanism and the insert operation). Thus, the repair mechanism generates additional
messages but does not affect the insert operation. In case of a delete operation, a node does
not delete itself until it has repaired the links at all the levels so an inconsistent backpointer

constraint will not be detected during the delete operation.

4.8.2.2 Restoring inter-level constraints

We see how each node periodically checks Constraint 5; we omit the details for Constraint 6
as it is a mirror image of Constraint 5. For each level ¢ > 0, each node z sends a message
to zRy_1 to check if xR, = :va_l, for some k£ > 0. Each node that receives the message

passes it to the right until one of the four following cases occur:

1. The message reaches node a, a < zRy; and m(a) | £ = m(z) | £.
2. The message reaches node a, a < Ry and aRy 1 = L.
3. The message reaches node a, a = zRy.

4. The message reaches node a, a > zRy.

In case 3, Constraint 5 is not violated and no repair action is violated. We provide a
repair mechanism for the each of the remaining three cases. The repair mechanism for fixing
violations of Constraint 6 is symmetric. It may be possible to combine the two mechanisms
to improve the performance but we will treat them separately for simplicity.

In each case, we assume that the link is present at level £ but absent at level £ — 1.

Note that if a node z is linked at level £ — 1 but not at level £, it can easily traverse the

103

list at level £ — 1 to determine which node to link to at level £. This process is identical to
the insertion process where a new node uses its neighbors at lower levels to insert itself at
higher levels in the skip graph.

The violations of Constraint 5 are as follows:

1. aRy = xR} |, but Ja =zR)_,, j <k, m(z) | £=m(a) | L.

L alL, aR;, R

HQ’"\) (o LEVEL ¢

zipperOpB zipperOpF

—~O (O=— LEVEL {1

T a=zR) ; zRy

Figure 4.11: Two-way merge to repair a violated inter-level constraint.

The nodes connected to a and z at level £ have to be merged together into one list by

sending the following messages:

e Probe level £ (in list containing a) to find largest aRfl =R < zRy. Node a starts
the probe by sending a message to aRy;. Upon reaching node y, ify < xRy < yRy,
the probe ends with y = R. Otherwise the message is passed to yRy.

e Send (zipperOpF, xRy, £) to R.

e Probe level £ (in list containing a) to find smallest aLf¥” = L > z. Node a starts
the probe by sending a message to aLy. Upon reaching node y, if yLy < x < y,

the probe ends with y = L. Otherwise the message is passed to yLy.

e Send (zipperOpB, z, £) to L.

2. zRy # a:Ré?_l for any k > 0, and Ja < xRy, aRy = L.

T TRy

—O O— LEVEL ¢

a
LEVEL ¢{—1

zipperOpB ——*" O
L

Figure 4.12: One-way merge to repair a violated inter-level constraint.

104

The nodes connected to a and xR, at level £ — 1 have to be merged together into one

list by sending the following messages:

e Probe level £—1 (in list containing = Ry) to find smallest zR,L¥ | = L > a. Node
xRy starts the probe by sending a message to ©RyLy, 1. Upon reaching node y,
such that y > a > yLy 1, the probe stops with y = L. Otherwise the message is

passed on to yL, 1.

e Send (zipperOpB, a, £ — 1) to L.

3. zRy # LI:RZ;_1 for any 5 > 0, and Ja = fo_l > xRy.

z TRy LEVEL £
zipperOpF
; abi CITPTOR
- O~ 1 - O==
zipper(pB \/C i‘ j\'/ a LEVEL/¢-1
L R

Figure 4.13: Two-way merge to repair a violated inter-level constraint.

The nodes connected to a and xR, at level £ — 1 have to be merged together into one

list by sending the following messages?:

e Probe level £—1 (in list containing zRy) to find largest :1cRgR§'_1 = R < a. Node
xRy starts the probe by sending a message to zR;Ry_1. Upon reaching node ,
if y < a < yRp_1, the probe ends with y = R. Otherwise the message is passed
to yRyp 1.

e Send (zipperOpF, a, £ — 1) to R.

e Probe level £ — 1 (in list containing zRy) to find smallest :cRgLfil =L>aly ;.

In this case, the probe proceeds along the predecessors of xR, at level £ — 1 till

it reaches node y such that y =L > aLy 1 > yLy 1.

e Send (zipperOpB, alLy_1, £ —1) to L.

tDetails of the zipperOp messages are given in Algorithms 9 and 10.

105

Algorithm 9: zipper0pB for node v

1 upon receiving (zipper0OpB, z, £):
2 if v.neighbor(L][(] > = then
3 ‘ send (zipper0OpB, z, £) to v.neighbor[L][{]
4 else
tmp = v.neighbor[L][/]
v.neighbor[L|[{] = =
send (updateOp, R, v, £) to
if tmp # L then
‘ send (zipperOpB, tmp, £) to x

© W N O !

Algorithm 10: zipperOpF for node v

[aey

upon receiving (zipperOpF, z, £):
if v.neighbor/R][(] < z then
‘ send (zipperOpF, z, £) to v.neighbor[R][/]

w N

else
tmp = v.neighbor[R][/]
v.neighbor[R|[{]= z
send (updateOp, L, v, £) to z
if tmp # L then
‘ send (zipperOpF, tmp, £) to z

© ® N o o ohs

New Links
(zipperOp messages)

Figure 4.14: zipper0Op operation to merge nodes on the same level.

106

Lemma 4.16 In the absence of new failures, inserts, and deletes, the repair mechanism
described in Section 4.8.2.2 repairs any violated inter-level constraint without losing existing

connectivity.

Proof: The algorithm initiates repair for all the possible violations of the inter-level
constraints of a node as given above. It only remains to be proved that the zipperOp mes-
sages merge two sorted lists at a given level into a single sorted list, without losing existing
connectivity. We concentrate on the zipperOpF messages as the zipper(OpB messages are
symmetric.

To prove that the repair mechanism merges two sorted lists into a single sorted one,
we first see that a node v always receives a zipperOpF message to link to a node greater
than itself. The initial zipperOpF messages sent are as follows: (i) In Case 3, R receives a
zipperOpF message to link to ¢ > R, and (ii) in Case 1, R receives a zipperOpF message
to link to zRy; > R. When a node v receives a zipperOpF message to link to z, if vRy < z,
it sends the message to vRy to link to = (line 3 of Algorithm 10). Otherwise, it updates
vR), = z (line 6 of Algorithm 10), and it sends a zipperOpF message to z < vRy to link to
vRy (line 9 of Algorithm 10). In both cases, the zipperOpF message reaches a node that
has to link to a node greater than itself. Also, each node v only links to a new node z if it
is smaller than the current successor of v, so v < vR; = x < vRy. Thus the two sorted lists
get merged into a single sorted list, until one of the lists terminates.

We also prove that the inter-level constraint repair mechanism does not lose any existing
connectivity in the skip graph, i.e, if a path between nodes v and z used to exist before the
repair mechanism was initiated, a path will still exist after the repair mechanism operations
finish. A link change occurs only when v receives a zipperOpF message to link to x < vRy =
z. Node v sends a zipperOpF message to z to link to z. Upon receipt of that message,
z either sets to zR, = z, or it sends passes the message to R, < z. In the first case,
the path between v and z is replaced by a new longer path v-z-z. In the latter case, the
zipperOp message passes through several nodes z Ry, ng, ..., until it reaches a node y such

that y < z < yRy and y sets yR, = z. Then the path vz is replaced by a longer path

107

vfﬂcfoer%. ..—y—2, and no existing connectivity is lost. il

It is possible that a node z detects a failed inter-level constraint if it checks it while
some node y is in the middle of its insert or delete operation. Node z will detect a failed
constraint at level £ if y has inserted itself at level £ — 1 and not at level £. The probe
message along level £ — 1 will reach y which can then inform z that it is yet to complete its

insert operation, and thus terminate the repair mechanism.

4.8.3 Proof of correctness

In this section we prove that the repair mechanism given in Algorithm 8 and Section 4.8.2.2
repairs a defective a defective skip graph.

We prove that the repair mechanism repairs a defective skip graph by showing that it
repairs level 0 after some finite interval of time, and then uses the links at level 0 to restore
the links at higher levels. Lemma 4.17 and Corollary 4.18 show that if there exists a path
between two nodes that consists entirely of pointers in any one direction (L or R), then the
repair mechanism ensures that after some finite interval of time, there is a path between
those two nodes in the same direction at level 0. For their proofs, we consider only the case
for the R links as the case for the L links is symmetric. This result is further extended in
Lemma 4.19 which shows that as long as there is path between two nodes, irrespective of
the directions of the edges in the path, there will be a path in both directions between the
two nodes at level 0. Corollary 4.20 shows that this leads to a single, sorted, doubly-linked
list at level 0 as in a defectless skip graph. Finally, Lemma 4.21 and Theorem 4.22 show

how the list at level 0 is used to create lists at higher levels, to eventually give a defectless

skip graph.

Lemma 4.17

1. Suppose we have yoRy, Ry, ... Ry, = yr, Yo < yr, for some r, and for each 1 < i <,
L <4t; <L+ 1. Then after some finite interval of time, yoRf = y,, for some k.

2. Suppose we have yoLy Ly, ...Ly, = yr, yo > Yr, for some r, and for each 1 < i < r,

L <tl; <L+ 1. Then after some finite interval of time, yoLf = y,, for some k.

108

Proof: Let yoRy Ry, ... Ry, = y;. Then there exists a link between each y; 1 and y;
at level £ or £+ 1. For each Ry, = Ry, 1, as y;—1R¢1 = v;, the inter-level repair mechanism
given in Section 4.8.2.2 ensures that after some finite interval of time, yi_lRf" = y;, for some
k; (Lemma 4.16). We then have yoRy, Ry, ... Ry, = yoRf1 ?2 ... R;” =y, where k; = 1 if

Ry, = Ry. Thus we get yoRS = y,, where k = k1 + ko + ... + k. I

Corollary 4.18

1. Suppose we have yoRy, Ry, ... Ry, = yYr, Yo < yr, for some r, and for each i, 1 <1 <r,

£; > 0. Then after some finite interval of time, yong = y,, for some k.

2. Suppose we have yoLy, Ly, ... Ly, = yr, yo > yr, for some 7, and for each i, 1 < i <7,

£; > 0. Then after some finite interval of time, yong = y,, for some k.

Proof: Let yoRy, Ry, ... Ry, = y;- Then for each y;_1, yi—1Ry, = y;- By Lemma 4.17,

o . . Kip.— .
after some finite interval of time, yi_lR&f‘l ' = y;, for some ki ¢,—1. By repeatedly applying
Lemma 4.17, after some finite interval of time, we get yi_lngi’o = y;, for some k; . So we

get y0R§1’°R§2’0 ... RIST’O = 9,. Thus, yong =y, where k = k1 g+ koo + ... + kpo. I

Lemma 4.19 Suppose we have yoEy, Ey, ...Ey, = y,, for some r, yo < y,, E € {L, R},
and for each 1 < i < r, £; > 0. Then after some finite interval of time, yoRE = y, and

yTng = yo for some k.

Proof: Let yoEy Ey, ... Ey,

1

= y;. For each y;, yi_1E,, = y;. By Corollary 4.18, after
some finite interval of time, yi_lEg”" = y,; for some k;. So we have yOE(’)“Eg2 ... E(l)“’ = Y.
If any of the y;’s are not distinct, then we can eliminate the path between two consecutive
occurrences of y;. So we can replace a path of the form yiE(l)“i ... ijgj , where y; = y;, with
yiE(’fj . Thus we have a path consisting of Ly and Ry edges starting at yy and terminating
at y, which consists only of unique nodes.

For each node, after some finite interval of time, the backpointer constraint repair mech-
anism given in Algorithm 8 will repair any violated backpointer constraints without losing
existing connectivity (Lemma 4.15). So Constraints 3 and 4 are repaired for all the nodes

in the path, and as proved in Theorem 4.14, Constraints 1 and 2 are always maintained.

109

As proved in Theorem 4.5, with Constraints 1 through 4 satisfied for all the nodes in the
path, we get a sorted, doubly-linked list of the nodes. Thus, yOng =9, and yTng = 1o, for

some k. 1

Corollary 4.20 After some finite interval of time, all nodes in the same connected com-
ponent of a skip graph are linked together in a single, sorted, doubly-linked list at level
0.

Proof: Lemma 4.19 shows that any two connected nodes x and y are in the same
sorted, doubly-linked list at level 0 after some finite interval of time. Any other node z in
the same connected component is also connected to both x and ¥, so it has to be in the
same list at level 0. Thus, all the nodes in the same connected component are in a single

list at level 0.

Given a set S, let My(S) be the set of all membership vector prefixes of length £ repre-
sented by the nodes in S, i.e., My(S) = {w | Iz € S,m(z) | £ = w}.

Lemma 4.21 Suppose we have all nodes in the same connected component C of a skip graph
linked together in |My(C)| sorted, doubly-linked lists at level £, one for each w € My(C).
Then after some finite interval of time, we get |Myy1(C)| sorted, doubly-linked lists at level

£+ 1, one for each w € My1(C).

Proof: Consider a single list L. at level £, and let node x € .. As explained in the
successor constraint repair mechanism given in Section 4.8.2.2, if Ly, xRy ¢ {L}, = uses
its neighbors at level £, to find its neighbors at level £ 4+ 1. As all the lists at level £ are
sorted and doubly-linked, z can find zRyy; and Ly in O(2|X]) time, just like in an insert
operation (Algorithm 2). When all the nodes of list . determine their neighbors at level
£+ 1 after some finite interval of time, we get the lists from the nodes of L. at level £+ 1, one
for each w € My, 1(L). This is identical to the insert operation and as proved in Lemma 4.6,
all the lists thus created are sorted and doubly-linked, and only consist of nodes that have
the matching membership vector prefix of length £ + 1. Thus, considering all the |M,(C)|
lists at level £, after some finite interval of time, we get |Mp11(C)| sorted, doubly-linked

lists at level £ + 1, one for each w € My 1(C). 1

110

Theorem 4.22 In the absence of new failures, inserts and deletes, the repair mechanism
gwen in Section 4.8 repairs a defective skip graph to give a defectless skip graph after some

finite interval of time.

Proof: Corollary 4.20 shows that after some finite interval of time, the repair mecha-
nism links all the nodes in the same connected component in a single, sorted, doubly-linked
list at level 0. Further, there are only finitely many levels in a skip graph. Using Lemma, 4.21
inductively, with Corollary 4.20 as the base case, we can show that we get sorted, doubly-
linked lists, which contain all the nodes with the matching non-empty membership vector
prefixes, at all levels of the skip graph. Thus, the repair mechanism repairs a defective skip

graph to give a defectless skip graph after some finite interval of time. il

4.9 Congestion

In addition to fault tolerance, a skip graph provides a limited form of congestion control,
by smoothing out hot spots caused by popular search targets. The guarantees that a skip
graph makes in this case are similar to the guarantees made for survivability. Just as a
node’s continued connectivity depends on the survival of its neighbors, its message load
depends on the popularity of its neighbors as search targets. However, we can show that
this effect drops off rapidly with distance; nodes that are far away from a popular target in
the bottom-level list of a skip graph get little increased message load on average.

We give two versions of this result. The first version, given in Section 4.9.1, shows
that the probability that a particular search uses a node between the source and target
drops off inversely with the distance from the node to the target. This fact is not neces-
sarily reassuring to heavily-loaded nodes. Since the probability averages over all choices
of membership vectors, it may be that some particularly unlucky node finds itself with a
membership vector that puts it on nearly every search path to some very popular target.
The second version, given in Section 4.9.2, shows that our average-case bounds hold with
high probability. While it is still possible that a spectacularly unlucky node is hit by most

searches, such a situation only occurs for very low-probability choices of membership vec-

111

tors. It follows that most skip graphs alleviate congestion well. For our results, we consider

skip graphs with alphabet {0, 1}.

4.9.1 Average congestion for a single search

Our argument that the average congestion is inversely proportional to distance is based on
the observation that a node only appears on a search path in a skip list S if it is among
the tallest nodes between itself and the target. We will need a small technical lemma that
counts the expected number of such tallest nodes. Consider a set-valued Markov process
Ay D A1 D A,... where Ap is some nonempty initial set and each element of A; appears in
A1 with independent probability % Let 7 be the largest index for which A, is not empty.

We will now show that E[|A;|] is small regardless of the size of the initial set Ag.
Lemma 4.23 Let Ay, Ay,..., A, be defined as above. Then E[|A;|] < 2.

Proof: The bound on E[|A;|] will follow from a surprising connection between E[|A;|]
and Pr[|A;| = 1]. We begin by obtaining a recurrence for Pr[|A,|] = 1.

Let P(n) = Pr[|A;| = 1:|A¢| = n]. Clearly P(0) =0 and P(1) =1 > 2. For larger
n, summing over all k = |A;| gives P(n) = 27" >} (})P(k), which can be rewritten
as P(n) = 5 Zz;i (})P(k). The solution to this recurrence goes asymptotically to
ﬁ +107° &~ 0.7213- - - [106, Theorem 7.9]; however, we will use the much simpler property
that when n > 2, P(n) = Pr[|A;| = 1] is the probability of an event that does not always
occur, and is thus less than 1.

Let E(n) = E[|A;| : [Ao| = n]. Then E(n) =27" (n+ Y ;_; (})E(k)), and eliminating
the E(n) term on the right-hand side gives E(n) = 5 (n + EZ;% (Z)E(k)) For n =1,
E(1) = 1 by definition. Recall that P(1) is also equal to 1. We will now show that

E(n) = 2P(n) for all n > 1. Suppose that E(k) = 2P(k) for 1 < k < n. Let n = 2, then

112

g
oy

SN
]

2P(k) for all 1 < k < n (an empty set of k). Then,

E(n) = 271—1_1 (n + HE_:_I (Z)E(k))

Since P(n) < 1 for n > 1, we immediately get E(n) < 2 for all n. For large n this is
an overestimate: given the asymptotic behavior of P(n), E(n) approaches 5 +2 x 107° ~

1.4427---. But it is close enough for our purposes. i1

Theorem 4.24 Let S be a skip graph with alphabet {0,1}, and consider a search from s to
tin S. Letu be a node with s < u < t in the key ordering (the case s > u > t is symmetric),
and let d be the distance from u to t, defined as the number of nodes v with u < v < t.

Then the probability that a search from s to t passes through u is less than %.

Proof: Let S, be the skip list restriction of s whose existence is shown by Lemma 4.1.
From Lemma 4.2, we know that searches in S follow searches in Sy,(5). Observe that for u
to appear in the search path from s to ¢ in Sp,(s) there must be no node v with u < v <t
whose height in S, is higher than u’s. It follows that u can appear in the search path
only if it is among the tallest nodes in the interval [u,], i.e., if |[m(s) Am(u)| > |m(s) Am(v)|
for all v with u < v < t. Recall that m(s) A m(v) is the common prefix (possibly empty) of
m(s) and m(v).

There are d + 1 nodes in this interval. By symmetry, if there are k£ tallest nodes then

the probability that u is among them is d’“

741- Let T be the random variable representing

the set of tallest nodes in the interval. Then:

113

d+1 k
S PIT| = K
P d+1

E[T]

d+1°

Prlu € T

What is the expected size of 77 All d + 1 nodes have height at least 0, and in general
each node with height at least k& has height at least k¥ + 1 with independent probability %
The set T consists of the nodes that are left at the last level before all nodes vanish. It is
thus equal to A; in the process defined in Lemma 4.23, and we have E[|T'|] < 2 and thus

PrlueT] < 7. 1

For comparison, experimental data for the congestion in a skip graph with 131072 nodes,

together with the theoretical average predicted by Theorem 4.24, is shown in Figure 4.15.

2 7 [actual load | ' '
ctual |oa
% L0 Fexpected load - []
B 0.9 [s
@ ‘
D0, 8 [s
1 T B R B A :
©
5 0.6 ol .
B O T T T R | S i (I -
© 0.4 [
§ 0.3
s 0.2 o
T 0.1 b
LL
0.0 e
76400 76450 76500 76550 76600 76650
Nodes

Figure 4.15: Actual and expected congestion in a skip graph with 131072 nodes with the
target=76539. Messages were delivered from each node to the target and the actual number
of messages through each node was measured. The bound on the expected congestion is
computed using Theorem 4.24. Note that this bound may overestimate the actual expected
congestion.

4.9.2 Distribution of the average congestion

Theorem 4.24 is of small consolation to some node that draws a probability # straw and

participates in every search. Fortunately, such disasters do not happen often. Define the

114

average congestion L;, imposed by a search for £ on a node u as the probability that
an s — t search hits u conditioned on the membership vectors of all nodes in the interval
[u,t], where s < u < t, or, equivalently, s > u > t.8 Note that since the conditioning does
not include the membership vector of s, the definition in effect assumes that m(s) is chosen
randomly. This approximates the situation in a fixed skip graph where a particular target
t is used for many searches that may hit u, but the sources of these searches are chosen
randomly from the other nodes in the graph.
2

Theorem 4.24 implies that the expected value of Ly, is no more than I In the following

theorem, we show the distribution of Ly, declines exponentially beyond this point.

Theorem 4.25 Let S be a skip graph with alphabet {0,1}. Fiz nodes t and u, where u <t

and |{v:u < v < t}| = d. Then for any integer £ > 0, Pr[Ly, > 274 < 2¢2"d,

Proof: Let V ={v:u < v <t} and let m(V) = {m(v) : v € V}. As in the proof of
Theorem 4.24, we will use the fact that u is on the path from s to ¢ if and only if u’s height
in Sy, (s) 18 not exceeded by the height of any node v in V.

To simplify the notation, let us assume without loss of generality that m(u) is the all-
zero vector. Then the height of u in Sy, ;) is equal to the length of the initial prefix of zeroes
in m(s), and u has height at least £ with probability 2—t. Whether this is enough to raise
it to the level of the tallest nodes in V' will depend on what membership vectors appear in
m(V).

Let m(s) = 0°1---. Then u has height exactly i, and is hit by an s — ¢ search unless
there is some v € V with m(v) = 0°1---. We will argue that when d = |V| is sufficiently
large, then there is a high probability that all initial prefixes 0°1 appear in m(V) for i < £.
In this case, u can only appear in the s — ¢ path if its height is at least ¢, which occurs
with probability only 27¢. So if 0’1 appears as a prefix of some m(v) for all i < £, then
Ly, < 27t Conversely, if L;, > 27¢, then 0’1 does not appear as a prefix of some m(v) for
some i < /.

Now let us calculate the probability that not all such prefixes appear in m(V). We are

going to show that this probability is at most 26_2_ld, and so we need to consider only the

81t is immediate from the proof of Theorem 4.24 that L, does not depend on the choice of s.

115

case where e 24 < % this bound is used in steps (4.2) and (4.3) below. We have:

Pr[Ls, > 279

IN

Pr[- (Vi <£: 3w €V :0°'l 2 m(v))]

= Pr[3i<{:YoeV:01 £m)]
-1

< ZPr[Vv €V : 01 £ m(v)]
=0
-1

= Y (-2

=0

1 '

26—2—%—%

=0

-1 ‘

_ 26—2—“10:
7=0
-1

= Z (C_Q_Zd) i

J
—

o2 g+l _
jz_% (e2) (4.2)
> ()™

7=0
—L
€2d

IA

D

IA

IN

1—e 27"
2e727"d, (4.3)

IA

4.10 Conclusions and future work

We have defined a new data structure, the skip graph, for distributed data stores that
has several desirable properties. Constructing, inserting new nodes into, and searching
in a skip graph can be done using simple and straightforward algorithms. Skip graphs are
highly resilient, tolerating a large fraction of failed nodes without losing connectivity. Using
the repair mechanism, disruptions to the data structure can be repaired in the absence

of additional faults. Skip graphs also support range queries which allows, for example,

116

searching for a copy of a resource near a particular location by using the location as low-
order field in the key and clustering of nodes with similar keys.

As explained in Section 4.4, one issue that remains to be addressed is the large number
of pointers per machine in the system. It would be interesting to design a peer-to-peer sys-
tem that maintains fewer pointers per machine and yet supports spatial locality. Also, skip
graphs do not exploit network locality (such as or latency along transmission paths) in loca-
tion of resources and it would be interesting to study performance benefits in that direction,
perhaps by using multi-dimensional skip graphs. As with other overlay networks, it would
be interesting to see how the network performs in the presence of Byzantine failures. Fi-
nally, it would be useful to develop a more efficient repair mechanism and a self-stabilization

mechanism to repair defective skip graphs.

117

Chapter 5

Conclusions and Open Problems

We conclude in this chapter by summarizing our contributions, comparing our approaches
with other contemporary peer-to-peer systems, and discussing some open problems as well

as future directions for research.

5.1 Conclusions

The thesis of this research is that efficient, fault-tolerant, decentralized peer-to-peer sys-
tems can be built using distributed data structures that consist of individual, unreliable
components. We presented two different data structures that efficiently manage resources
while providing fault tolerance, maintaining a dynamic network, and supporting complex
queries. Although there are still several open problems in the area, we believe that this
research will provide new insights which will lead to the development of more sophisticated
systems and algorithms.

We compare the performance of our approaches with some other contemporary peer-to-
peer systems in Table 5.1. The lookup time for all the DHT systems is logarithmic and the
insert time is at most polylogarithmic in the number of machines m. For our abstract DHT
model as well as skip graphs, similar bounds apply but in the number of resources n. As
long as n is polynomial in m, we get the same asymptotic performance for all the systems.
The space requirements for maintaining state vary greatly from system to system. With

m machines in the network, Chord, Pastry, and Tapestry require O(logm) space at each

118

Scheme Search Insert Space per | Spatial | Topology
Time Time machine | locality | awareness
Chord [112] O(logm) | O(log?m) | O(logm) No No
1/d
CAN [95] O(dm*'%) O(d) 0O(d) No Partially
(With d = logm) O(logm) | O(logm) | O(logm)
Pastry [99] O(logm) | O(logm) | O(logm) No Partially
Tapestry [125]
Viceroy [78] O(logm) | O(logm) 0(1) No No
Abstract DHT model [4] | O(logn) | O(log?n) | O(logn) No No
Skip graph [5] O(logn) | O(logn) | O(logn) Yes No

Table 5.1: Comparison of peer-to-peer systems. m is the number of machines in the system
whereas n is the number of resources.
machine in the network; Viceroy takes it one step further by reducing this requirement to
O(1). CAN requires O(d) space at each machine. In comparison, skip graphs require much
more space; with n resources in the systems, each machine requires O(logn) space for each
resource that it hosts. We discuss possible directions for reduction in space requirements
while retaining spatial locality in Section 5.2.1

The primary differences between the various systems are sensitivity to topology and
support for spatial locality. As explained in Chapter 2, both CAN and Pastry/Tapestry are
partially sensitive to topology. The topologically-sensitive construction of the CAN overlay
network supports proximity routing, but it has the disadvantage of non-uniform population
of the coordinate space, and it is not completely self-configuring. Both Pastry and Tapestry
exclusively provide the proximity neighbor selection in all the systems developed so far,
although they too weigh progress in the identifier space against the benefits in latency or
physical distance. These systems can choose the best neighbor as per the proximity metric
if the entire m? latency/proximity matrix for all the m machines is available (or by using
some efficient heuristics in the absence of this matrix). It is unclear whether this is the best
approach to optimize proximity or if it can be easily applied to other systems.

To the best of our knowledge, skip graphs are the first data structure that maintain

spatial locality. This naturally enhances the impoverished query language provided by

119

DHTs by supporting complex searches such as range queries and near matches to a key.
SkipNet is another system which partially supports spatial locality, that was developed
independently by Harvey et al.[51]. As the primary goal of SkipNet is to provide path and

content locality, it does not concentrate on full-fledged spatial locality.

5.2 Open Problems

Even though peer-to-peer systems were introduced only a few years ago, they are now one of
the most popular Internet applications and have become a major source of Internet traffic.
Various designs have been proposed to implement such systems but a lot still remains to
be done. We end this thesis with a list of open problems and note that it merely meant to
be illustrative, not exhaustive. We also note that we focus on issues directly related to the
results in this dissertation; this is not intended to imply in any way that related topics such

as security, anonymity, and replica management are any less significant.

5.2.1 State-Locality trade-off

In the spectrum of contemporary peer-to-peer systems, DHTs are at one end where they
minimize the state requirement at each node, and skip graphs are at the other end with
support for spatial locality. Can we design a system that provides support for spatial local-
ity and uniform load balancing without excessive storage space at each node? We outline
some possible directions to solve this problem of maintaining locality but reducing the state

information at each node.

(i) Range splitting: One way to reduce the state is to build a skip graph by splitting
ranges of resources and distributing them to machines physically close to one another. For
example, if the range of keys is [a-z], then we could assign [a-e] to one machine, [f-i] to
another machine, and so on. The links to neighbors at lower levels need not be maintained
as they will point to the same machine as the one on which the resource itself is stored.
When a particular machine gets overloaded with too many resources in its allocated range,

it can spill over excess load onto its neighbors. Splitting ranges over machines that are close

120

together with respect to network locality, can reduce the overhead of shifting resources or
their address entailed by this method, and can even help in more efficient network-locality
routing. It would be interesting to see if this idea could be further developed, potentially

using some of the techniques used in B-tree node splits [13] to maintain load balance.

(ii) Locality-sensitive hashing: The earlier approach maintains the basic skip graph
structure and tries to minimize space usage. Another prospective approach would be to
retain the structure of a DHT for load balancing, and then add locality to this. We saw one
technique used for answering approximate range queries in Chapter 2 by Gupta et al.[47],
which replaced consistent hashing, typically used in DHTs, with locality-sensitive hashing.
This method compromises on both load balancing as well as the ability to answer queries
ezactly. It would be interesting to see if there is a hash function that could give both good

load balancing as well as good locality properties.

5.2.2 Richer query language

DHTs only support exact matches to a key to locate resources. We discussed some ex-
tensions such as the use of bloom filters and locality-sensitive hashing to improve searches
in DHTs in Section 2.6.1. However, these improvements are only marginal and not very
effective for complex queries.

Skip graphs represent an important step in improving the search capabilities of a peer-
to-peer system. With support for spatial locality, skip graphs can support range queries,
near matches to a key, and approximate queries. However, a rich query language should
also allow for combinations and correlations between data items. For example, it is possible
to find all the paintings by Picasso in a skip graph, but it would not be possible to find the
ones that have flowers in them as that information may not be contained in the name of the
painting. Can we improve the query language to enable answering more complex queries in

a peer-to-peer system?

121

5.2.3 Efficient repair

We gave a repair mechanism for skip graphs in Section 4.8 that in the worst case, takes time
quadratic in the number of nodes of the skip graph. This leads to the following question:
Is it possible to develop a more efficient repair mechanism for a skip graph? Even more
interesting would be a self-stabilization mechanism that could take a disrupted skip graph
from any arbitrary starting configuration and restore it efficiently to its defectless state. A
good starting point will be to use the merge sort techniques for parallel pointer machines
given by Goodrich et al.[45]. The methods described therein cannot directly be utilized for
our purposes as they presume the existence of some common storage that can be accessed
by all the processes, which is absent in the message-passing environment of a peer-to-peer
system. A related interesting question is: Can we design a new system which has the
benefits of DHTs and skip graphs, and supports quicker and/or cheaper recoveries from

failures?

5.2.4 Topologically-sensitive overlay networks

One of the fundamental challenges in peer-to-peer systems today is to build an overlay net-
work that is sensitive to topology and/or latency. In addition to path locality, topologically-
sensitive routing would also be beneficial to serve content from replicas located closest in
physical distance. In all the overlay networks, a path consists of a certain number of
application-level, not IP-level hops. In current systems, little effort is taken to see that the
application level hops are congruent to the IP-level hops. As explained earlier, Pastry [99],
Tapestry [125], and CAN [95] partially support topologically-sensitive routing. In other
systems, a lookup from a node in Yale could potentially go through some distant node in
India before it reaches the destination node in Harvard.

Routing schemes for mobile networks that incorporate geographic distances can be seen
is systems like grid location service [72] and greedy perimeter stateless routing [59]. Hil-
drum et al.[52] and Karger et al.[58] present some methods to solve the nearest neighbor
problem in restricted overlay networks. Can these techniques be suitably applied to incor-

porate full-fledged network locality in peer-to-peer systems? Is it sufficient to use proximity

122

routing and nearest neighbor searches to achieve the benefits of global routing sensitive to
network locality?

One approach is to generalize our abstract model of a DHT to multiple dimensions. One
of the dimensions could be used to represent the actual, physical locations of the machines in
the system. Ideally, we would like large jumps in the dimension that represents the keyspace
and smaller strides in the dimension for network distances. Another approach would be to
use Bartal’s probabilistic approximation to the overlay metric space using hierarchically
separated trees [11], and obtain an approximate solution for locating nearest neighbors. We

could possibly also use multi-dimensional skip graphs to achieve the same purpose.

5.2.5 Handling failures

Our data structures are tolerant to crash failures; random failures for the abstract DHT
model, and both random as well as adversarial failures for skip graphs. However, we are
yet to study the performance of these networks in the presence of byzantine failures, where
nodes can behave arbitrarily. For example, a byzantine node can send different messages
to different processes even if it is supposed to send the same message to all processes. If
the message is improperly formatted, then the recipient can detect that the sender is faulty
but difficulties arise when the message is plausible to the recipient but incorrect. A faulty
process can also mimic the behavior of a crashed process by sending no messages beyond a
certain point. Typical techniques for dealing with such failures would include redundancy
and cryptographic signing to detect and repair broken nodes [77].

A recent survey by Feigenbaum et al.[34] shows that there is interest in designing more
realistic failure models for peer-to-peer systems where the nodes could collude with one
another and deviate from the established protocol for their own selfish interests. The idea
is to build computationally-feasible systems that allow nodes to behave rationally, while
behaving collectively to maximize the common welfare of the system as a whole. This model
has been studied for other problems in the field of Algorithmic Mechanism Design [88] which
focuses on combining aspects of computational feasibility and game theory such as incentive
compatibility. More recently, there has been interest is using this model for distributed

systems in the area of Distributed Algorithmic Mechanism Design (DAMD) [33, 34].

123

One such architecture for fair sharing of storage resources (allowing a node to consume
only as much storage as it provides), which is robust against collusions of nodes is presented
by Ngan et al.[87]. MojoNation [81], which provides a distributed RAID network, also tries
to ensure fair sharing of resources by introducing an intermediate form of currency between
peers that is called “mojo”. Cooper et al.[23, 22] give techniques, such as deed trading,
advertising, and bidding for trading storage space between two nodes in the system. A list
of interesting open questions related to peer-to-peer systems with selfish participants can

be found in [108].

5.2.6 New designs

Detailed measurement analysis [104, 103, 71] has been done on peer-to-peer traffic in com-
mercial systems such as Napster [85], Gnutella [43], and KaZaA [61]. These studies reveal
that the hosts that participate in these networks are highly heterogeneous with respect
to factors such as latencies, lifetimes and shared data. Further, the peers are not always
willing to cooperate, and do not behave equally in contributing and consuming resources.
Contemporary designs do not take this heterogeneity into account and attempt to distribute
the load of maintaining the network as uniformly as possible among all the participants.
It would be interesting to see if new designs can be developed that take advantage of this
heterogeneity to built a more efficient peer-to-peer system.

Peer-to-peer systems have come a long way in a short span of time since the early days
of Napster. Several elegant approaches have been proposed and implemented for the design
of such systems, each of which have their own benefits and limitations. We believe that
it would be instructional to combine the insights of these different approaches to develop

more sophisticated systems in the future.

124

Bibliography

1]

FIPS 180-1. Secure Hash Standard. In U. S. Department of Commerce/NIST,
National Technical Information Service, Springfield, VA, USA, April 1995.
http://www.itl.nist.gov/fipspubs/fip180-1.htm.

Sameer Ajmani, Dwaine E. Clarke, Chuang-Hue Moh, and Steven Richman. Con-
Chord: Cooperative SDSI Certificate Storage and Name Resolution. In Peter Dr-
uschel, Frans Kaashoek, and Antony Rowstron, editors, Proceedings of the First Inter-
national Workshop on Peer-to-Peer Systems (IPTPS), volume 2429 of Lecture Notes
in Computer Science, pages 141-154, Cambridge, MA, USA, March 2002.

Akamai. http://www.akamai.com.

James Aspnes, Zoé Diamadi, and Gauri Shah. Fault-tolerant Routing in Peer-to-
peer Systems. In Proceedings of the Twenty-First ACM Symposium on Principles of
Distributed Computing (PODC), pages 223-232, Monterey, CA, USA, July 2002. Sub-
mitted to Distributed Computing. Available at http://arXiv.org/abs/cs/0302022.

James Aspnes and Gauri Shah. Skip Graphs. In Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 384-393, Baltimore,
MD, USA, January 2003. Submitted to a special issue of Journal of Algorithms
dedicated to select papers of SODA 2003.

Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations
and Advanced Topics. McGraw-Hill Publishing Company, Cambridge, UK, 1998.

AudioGalaxy. http://www.audiogalaxy.com.

Yonatan Aumann and Michael A. Bender. Fault Tolerant Data Structures. In Proceed-
ings of the Thirty-Seventh Annual Symposium on Foundations of Computer Science
(FOCS), pages 580-589, Burlington, VT, USA, October 1996.

Baruch Awerbuch and Christian Scheideler. Peer-to-peer Systems for Prefix Search.
In Proceedings of the Twenty-Second ACM Symposium on Principles of Distributed
Computing (PODC), Boston, MA, USA, July 2003. To Appear.

Hari Balakrishnan, Scott Shenker, and Michael Walfish. Semantic-Free Referencing
in Linked Distributed Systems. In Proceedings of the Second International Workshop
on Peer-to-Peer Systems (IPTPS), Berkeley, CA, USA, February 2003.

Yair Bartal. Probabilistic Approximation of Metric Spaces and its Algorithmic Ap-
plications. In Proceedings of the Thirty-Seventh Annual Symposium on Foundations
of Computer Science (FOCS), pages 184-193, Burlington, VT, USA, October 1996.

125

[12]

[15]

[16]

[19]

[21]

Mayank Bawa, Roberto J. Bayardo Jr., Sridhar Rajagopalan, and Eugene J. Shekita.
Make it Fresh, Make it Quick - Searching a Network of Personal Webservers. In
Proceedings of the Twelfth International World Wide Web Conference (WWW), pages
129-140, Budapest, Hungary, May 2003. To Appear.

Rudolf Bayer and Edward M. McCreight. Organization and Maintenance of Large
Ordered Indices. Acta Informatica, 1(3):173-189, 1972.

Bobby Bhattacharjee, Pete Keleher, and Bujor Silaghi. The Design of TerraDir.
Technical Report CS-TR-4299, University of Maryland, College Park, College Park,
MD, USA, October 2001.

Burton H. Bloom. Space/Time Tradeoffs in Hash Coding with Allowable Errors.
Communications of the ACM, 13(7):422-426, July 1970.

William J. Bolosky, John R. Douceur, David Ely, and Marvin Theimer. Feasibility
of a Serverless Distributed File System Deployed on an Existing Set of Desktop PCs.
In Proceedings of the ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, pages 34-43, Santa Clara, CA, USA, June 2000.

John Byers, Jeffrey Considine, and Michael Mitzenmacher. Simple Load Balancing
for Distributed Hash Tables. In Proceedings of the Second International Workshop on
Peer-to-Peer Systems (IPTPS), Berkeley, CA, USA, February 2003.

Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony Row-
stron, and Atul Singh. SplitStream: High-bandwidth content distribution in a coop-
erative environment. In Proceedings of the Second International Workshop on Peer-
to-Peer Systems (IPTPS), Berkeley, CA, USA, February 2003.

Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Rowstron.
SCRIBE: A large-scale and decentralized application-level multicast infrastructure.
IEEE Journal on Selected Areas in Communications (JSAC) (Special issue on Net-
work Support for Multicast Communications), 20(8):1489-1499, October 2002.

Miguel Castro, Michael B. Jones, Anne-Marie Kermarrec, Antony Rowstron, Marvin
Theimer, Helen Wang, and Alec Wolman. An Evaluation of Scalable Application-level
Multicast Built Using Peer-to-peer Overlays. In Proceedings of the Twenty-Second
Annual Joint Conference of the IEEE Computer and Communications Societies (IN-
FOCOM), San Francisco, CA, USA, March 2003.

Tan Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet:
A Distributed Anonymous Information Storage and Retrieval System. In Hannes
Federrath, editor, Designing Privacy Enhancing Technologies: International Work-
shop on Design Issues in Anonymity and Unobservability, volume 2009 of Lec-
ture Notes in Computer Science, pages 46—66, Berkeley, CA, USA, July 2000.
http://www.freenet.sourceforge.net.

Brian F. Cooper and Hector Garcia-Molina. Bidding for Storage Space in a Peer-to-
peer Data Preservation System. In Proceedings of the Twenty-Second International
Conference on Distributed Computing Systems (ICDCS), pages 372-381, Vienna, Aus-
tria, July 2002.

126

[23]

[24]

[26]

[27]

[28]

Brian F. Cooper and Hector Garcia-Molina. Peer-to-Peer Resource Trading in a Reli-
able Distributed System. In Peter Druschel, Frans Kaashoek, and Antony Rowstron,
editors, Proceedings of the First International Workshop on Peer-to-Peer Systems
(IPTPS), volume 2429 of Lecture Notes in Computer Science, pages 319-327, Cam-
bridge, MA, USA, March 2002.

Russ Cox, Athicha Muthitacharoen, and Robert T. Morris. Serving DNS using a
Peer-to-peer Lookup Service. In Peter Druschel, Frans Kaashoek, and Antony Row-
stron, editors, Proceedings of the First International Workshop on Peer-to-Peer Sys-
tems (IPTPS), volume 2429 of Lecture Notes in Computer Science, pages 155-165,
Cambridge, MA, USA, March 2002.

Arturo Crespo and Hector Garcia-Molina. Routing Indices for Peer-to-peer Systems.
In Proceedings of the Twenty-Second International Conference on Distributed Com-
puting Systems (ICDCS), pages 23-32, Vienna, Austria, July 2002.

Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica.
Wide-area cooperative storage with CFS. ACM SIGOPS Operating Systems Review,
35(5):202-215, December 2001.

Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatowicz, and Ion Stoica. Towards
a Common API for Structured Peer-to-Peer Overlays. In Proceedings of the Sec-
ond International Workshop on Peer-to-Peer Systems (IPTPS), Berkeley, CA, USA,
February 2003.

Mayur Datar. Butterflies and Peer-to-Peer Networks. In Rolf Mohring and Rajeev
Raman, editors, Proceedings of the Tenth European Symposium on Algorithms (ESA),
volume 2461 of Lecture Notes in Computer Science, pages 310-322, Rome, Italy,
September 2002.

Rene de la Briandais. File searching using variable length keys. In Proceedings of the
Western Joint Computer Conference, volume 15, pages 295-298, Montvale, NJ, USA,
1959.

Luc Devroye. A limit theory for random skip lists. The Annals of Applied Probability,
2(3):597-609, 1992.

John R. Douceur. The Sybil Attack. In Peter Druschel, Frans Kaashoek, and Antony
Rowstron, editors, Proceedings of the First International Workshop on Peer-to-Peer
Systems (IPTPS), volume 2429 of Lecture Notes in Computer Science, pages 251260,
Cambridge, MA, USA, March 2002.

Sameh El-Ansary, Luc Onana Alima, Per Brand, and Seif Haridi. Efficient Broadcast
in Structured P2P Networks. In Proceedings of the Second International Workshop
on Peer-to-Peer Systems (IPTPS), Berkeley, CA, USA, February 2003.

Joan Feigenbaum, Christos Papadimitriou, and Scott Shenker. Sharing the Cost of
Multicast Transmissions. Journal of Computer and System Sciences, 63(1):21-41,
August 2001.

127

[34]

[35]

[36]

[37]

[42]

[43]
[44]

[45]

[46]

Joan Feigenbaum and Scott Shenker. Distributed Algorithmic Mechanism Design: Re-
cent Results and Future Directions. In Proceedings of the Sizth International Work-
shop on Discrete Algorithms and Methods for Mobile Computing and Communica-
tions, pages 1-13, Atlanta, GA, USA, September 2002.

Amos Fiat and Jared Saia. Censorship Resistant Peer-to-Peer Content Addressable
Networks. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 94-103, San Francisco, CA, USA, January 2002.
Submitted to a special issue of Journal of Algorithms dedicated to select papers of
SODA 2002.

Edward Fredkin. Trie Memory. Communications of the ACM, 3(9):490-499, Septem-
ber 1960.

Michael J. Freedman and David Maziéres. Sloppy hashing and self-organizing clus-
ters. In Proceedings of the Second International Workshop on Peer-to-Peer Systems
(IPTPS), Berkeley, CA, USA, February 2003.

Michael J. Freedman and Radek Vingralek. Efficient Peer-to-Peer Lookup Based on a
Distributed Trie. In Peter Druschel, Frans Kaashoek, and Antony Rowstron, editors,
Proceedings of the First International Workshop on Peer-to-Peer Systems (IPTPS),
volume 2429 of Lecture Notes in Computer Science, pages 66—75, Cambridge, MA,
USA, March 2002.

Christine Frey, P. J. Huffstutter, and Dave Wilson. News Web Sites Clogged in
Aftermath; Internet: Breakdown highlights weakness of medium not ready to compete
with radio, TV. (Sept. 12, 2001). The Los Angeles Times.

Joaquim Gabarré, Conrado Martinez, and Xavier Messeguer. A Top-Down Design of
a Parallel Dictionary using Skip Lists. Theoretical Computer Science, 158(1-2):1-33,
May 1996.

Joaquim Gabarré and Xavier Messeguer. A Unified Approach to Concurrent and
Parallel Algorithms on Balanced Data Structures. In Proceedings of the Seventeenth
International Conference of the Chilean Computer Society (SCCC), pages 78-92, Val-
pardiso, Chile, November 1997.

Prasanna Ganesan, Qixiang Sun, and Hector Garcia-Molina. YAPPERS: A Peer-to-
Peer Lookup Service over Arbitrary Topology. In Proceedings of the Twenty-Second

Annual Joint Conference of the IEEE Computer and Communications Societies (IN-
FOCOM), San Francisco, CA, USA, March 2003.

Gnutella. http://gnutella.wego.com.

Gnutella protocol, Version 0.4.
http://www9.limewire.com/developer/gnutella protocol 0.4.pdf.

Michael T. Goodrich and S. Rao Kosaraju. Sorting on a Parallel Pointer Machine
with Applications to Set Expression Evaluation. Journal of the ACM, 43(2):331-361,
March 1996.

Google. http://www.google.com.

128

[47]

[48]

[50]

[53]

[55]

Abhishek Gupta, Divyakant Agrawal, and Amr El Abbadi. Approximate Range Selec-
tion Queries In Peer-to-Peer Systems. In Proceedings of the First Biennial Conference
on Innovative Data Systems Research (CIDR), pages 141-151, Asilomar, CA, USA,
January 2003.

Indranil Gupta, Kenneth Birman, Prakash Linga, Al Demers, and Robbert Van Re-
nesse. Kelips*: building an efficient and stable P2P DHT through increased memory
and background overhead. In Proceedings of the Second International Workshop on
Peer-to-Peer Systems (IPTPS), Berkeley, CA, USA, February 2003.

Steven Hand and Timothy Roscoe. Mnemosyne: Peer-to-peer Steganographic Storage.
In Peter Druschel, Frans Kaashoek, and Antony Rowstron, editors, Proceedings of
the First International Workshop on Peer-to-Peer Systems (IPTPS), volume 2429 of
Lecture Notes in Computer Science, pages 130-140, Cambridge, MA, USA, March
2002.

Matthew Harren, Joseph M. Hellerstein, Ryan Huebsch, Boon Thau Loo, Scott
Shenker, and Ion Stoica. Complex Queries in DHT-Based Peer-to-Peer Networks.
In Peter Druschel, Frans Kaashoek, and Antony Rowstron, editors, Proceedings of
the First International Workshop on Peer-to-Peer Systems (IPTPS), volume 2429 of
Lecture Notes in Computer Science, pages 242-250, Cambridge, MA, USA, March
2002.

Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, and Alec
Wolman. SkipNet: A Scalable Overlay Network with Practical Locality Properties. In
Proceedings of the Fourth USENIX Symposium on Internet Technologies and Systems
(USITS), pages 113-126, Seattle, WA, USA, March 2003.

Kirsten Hildrum, John D. Kubiatowicz, Satish Rao, and Ben Y. Zhao. Distributed
Object Location in a Dynamic Network. In Proceedings of the Fourteenth ACM Sym-
posium on Parallel Algorithms and Architectures (SPAA), pages 41-52, Winnipeg,
Manitoba, Canada, August 2002.

Piotr Indyk, Rajeev Motwani, Prabhakar Raghavan, and Santosh Vempala. Locality-
Preserving Hashing in Multidimensional Spaces. In Proceedings of the Twenty-Ninth
Annual ACM Symposium on Theory of Computing (STOC), pages 618-625, El Paso,
TX, USA, May 1997.

Sitaram Iyer, Antony Rowstron, and Peter Druschel. SQUIRREL: A decentralized,
peer-to-peer web cache. In Proceedings of the Twenty-First ACM Symposium on
Principles of Distributed Computing (PODC), pages 213-222, Monterey, CA, USA,
July 2002.

Roberto J. Bayardo Jr., Rakesh Agrawal, Daniel Gruhl, and Amit Somani. YouServ:
A Web-Hosting and Content Sharing Tool for the Masses. In Proceedings of the
Eleventh International World Wide Web Conference (WWW), pages 345-354, Hon-
olulu, HI, USA, May 2002.

M. Frans Kaashoek and David R. Karger. Koorde: A Simple Degree-optimal Dis-
tributed Hash Table. In Proceedings of the Second International Workshop on Peer-
to-Peer Systems (IPTPS), Berkeley, CA, USA, February 2003.

129

[57]

[63]

[64]

David Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel Lewin, and Rina
Panigrahy. Consistent Hashing and Random Trees: Distributed Caching Protocols
for Relieving Hot Spots on the World Wide Web. In Proceedings of the Twenty-Ninth
ACM Symposium on Theory of Computing (STOC), pages 654663, El Paso, TX,
USA, May 1997.

David Karger and Matthias Ruhl. Finding Nearest Neighbors in Growth-restricted
Metrics. In Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of
Computing (STOC), pages 741-750, Montreal, Canada, May 2002.

Brad Karp and H. T. Kung. GPSR: Greedy Perimeter Stateless Routing for Wireless
Networks. In Proceedings of the Sixzth Annual International Conference on Mobile
Computing and Networking (MOBICOM), pages 243-254, Boston, MA, USA, August
2000.

Richard M. Karp, Eli Upfal, and Avi Wigderson. The Complexity of Parallel Search.
Journal of Computer and System Sciences, 36(2):225-253, April 1988.

KaZaA. http://www.kazaa.com.

Pete Keleher, Bobby Bhattacharjee, and Bujor Silaghi. Are Virtualized Overlay Net-
works Too Much of a Good Thing? In Peter Druschel, Frans Kaashoek, and Antony
Rowstron, editors, Proceedings of the First International Workshop on Peer-to-Peer
Systems (IPTPS), volume 2429 of Lecture Notes in Computer Science, pages 225-231,
Cambridge, MA, USA, March 2002.

David Kempe, Jon M. Kleinberg, and Alan J. Demers. Spatial Gossip and Resource
Location Protocols. In Proceedings of the Thirty-Third Annual ACM Symposium on
Theory of Computing (STOC), pages 163-172, Crete, Greece, July 2001.

Peter Kirschenhofer, Conrado Martinez, and Helmut Prodinger. Analysis of an Opti-
mized Search Algorithm for Skip Lists. Theoretical Computer Science, 144(1-2):119—
220, June 1995.

Peter Kirschenhofer and Helmut Prodinger. The Path Length of Random Skip Lists.
Acta Informatica, 31(8):775-792, 1994.

Jon Kleinberg. The Small-World Phenomenon:An Algorithmic Perspective. In Pro-
ceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing
(STOC), pages 163-170, Portland, OR, USA, May 2000.

Jon Kleinberg. Small-World Phenomena and the Dynamics of Information. In T. G.
Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information
Processing Systems 14, pages 431-438, Cambridge, MA, USA, December 2001.

Donald E. Knuth. The Art of Computer Programming: Sorting and Searching, vol-
ume 3. Addison-Wesley, Reading, MA, USA, 1973.

John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,
Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westley
Weimer, Chris Wells, and Ben Zhao. OceanStore: An Architecture for Global-Scale
Persistent Storage. ACM SIGPLAN Notices, 31(1):190-201, November 2000.

130

[70]

[71]

[80]

[81]

Per-Ake Larson. Dynamic Hash Tables. Communications of the ACM, 31(4):446-457,
April 1988.

Nathaniel Leibowitz, Aviv Bergman, Roy Ben-Shaul, and Aviv Shavit. Are File
Swapping Networks Cacheable? Characterizing P2P Traffic. In Proceedings of the
Seventh International Workshop on Web Content Caching and Distribution, Boulder,

CO, USA, August 2002.

Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R. Karger, and Robert
Morris. A Scalable Location Service for Geographic Ad Hoc Routing. In Proceedings

of the Sizth Annual International Conference on Mobile Computing and Networking
(MOBICOM), pages 120-130, Boston, MA, USA, August 2000.

Jinyang Li, Boon Thau Loo, Joe Hellerstein, Frans Kaashoek, David Karger, and
Robert Morris. On The Feasibility of Peer-to-Peer Web Indexing and Search. In
Proceedings of the Second International Workshop on Peer-to-Peer Systems (IPTPS),
Berkeley, CA, USA, February 2003.

Nathan Linial and Ori Sasson. Non-Expansive Hashing. In Proceedings of the Twenty-
Eighth Annual ACM Symposium on the Theory of Computing (STOC), pages 509-518,
Philadelphia, PA, USA, May 1996.

Witold Litwin. Linear Hashing: A New Tool for File and Table Addressing. In
Proceedings of the Sixzth International Conference on Very Large Data Bases (VLDB),
pages 212-223, Montreal, Quebec, Canada, October 1980. Reprinted in Reading in
Database Systems, M. Stonebraker Ed., 2nd ed., 1995.

Witold Litwin, Marie-Anna Neimat, and Donovan A. Schneider. LH* — a scalable,
distributed data structure. ACM Transactions on Database Systems, 21(4):480-525,
December 1996.

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishing, Burlington,
MA, USA, 1997.

Dahlia, Malkhi, Moni Naor, and David Ratajczak. Viceroy: A Scalable and Dynamic
Emulation of the Butterfly. In Proceedings of the Twenty-First ACM Symposium on
Principles of Distributed Computing (PODC), pages 183-192, Monterey, CA, USA,
July 2002.

Gurmeet Singh Manku, Mayank Bawa, and Prabhakar Raghavan. Symphony: Dis-
tributed Hashing in a Small World. In Proceedings of the Fourth USENIX Symposium
on Internet Technologies and Systems (USITS), pages 127-140, Seattle, WA, USA,
March 2003.

Petar Maymounkov and David Maziéres. Kademlia: A Peer-to-peer Information Sys-
tem Based on the XOR Metric. In Peter Druschel, Frans Kaashoek, and Antony
Rowstron, editors, Proceedings of the First International Workshop on Peer-to-Peer
Systems (IPTPS), volume 2429 of Lecture Notes in Computer Science, pages 5365,
Cambridge, MA, USA, March 2002.

MojoNation. http://mojonation.net.

131

[82]
[83]

[84]

[85]
[86]

[87]

[91]

[92]

[93]

[94]

Morpheus. http://wuww.musiccity.com.

J. Ian Munro and Patricio V. Poblete. Fault Tolerance and Storage Reduction In
Binary Search Trees. Information and Control, 62(2/3):210-218, August 1984.

Moni Naor and Udi Weider. A Simple Fault-Tolerant Distributed Hash Table. In
Proceedings of the Second International Workshop on Peer-to-Peer Systems (IPTPS),
Berkeley, CA, USA, February 2003.

Napster. http://www.napster.com.

T. S. Eugene Ng and Hui Zhang. Towards Global Network Positioning. In Proceedings
of the First ACM SIGCOMM Workshop on Internet Measurement, pages 25—29, San
Francisco, CA, USA, November 2001.

Tsuen-Wan “Johnny” Ngan, Dan S. Wallach, and Peter Druschel. Enforcing Fair
Sharing of Peer-to-Peer Resources. In Proceedings of the Second International Work-
shop on Peer-to-Peer Systems (IPTPS), Berkeley, CA, USA, February 2003.

Noam Nisan and Amir Ronen. Algorithmic Mechanism Design. Games and Economic
Behavior, 35(1-2):166-196, April 2001.

Venkata N. Padmanabhan and Kunwadee Sripanidkulchai. The Case for Cooperative
Networking. In Peter Druschel, Frans Kaashoek, and Antony Rowstron, editors,
Proceedings of the First International Workshop on Peer-to-Peer Systems (IPTPS),
volume 2429 of Lecture Notes in Computer Science, pages 178-190, Cambridge, MA,
USA, March 2002.

Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal. Building Low-Diameter
P2P Networks. In Proceedings of the Forty-Second Annual IEEE Symposium on the
Foundations of Computer Science (FOCS), pages 492-499, Las Vegas, NV, USA,
October 2001. To appear in IEEE Journal on Selected Areas in Communications
(JSAC).

Thomas Papadakis, J. lan Munro, and Patricio V. Poblete. Analysis of the Expected
Search Cost in Skip Lists. In J. R. Gilbert and R. G. Karlsson, editors, Proceedings
of the Second Scandinavian Workshop on Algorithm Theory (SWAT 90), volume 447
of Lecture Notes in Computer Science, pages 160-172, Bergen, Norway, July 1990.

C. Greg Plaxton, Rajamohan Rajaraman, and Andrea W. Richa. Accessing Nearby
Copies of Replicated Objects in a Distributed Environment. Theory of Computing
Systems, 32(3):241-280, 1999.

William Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees. Communi-
cations of the ACM, 33(6):668—676, June 1990.

Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana, Richard Karp, and Scott
Shenker. Load Balancing in Structured P2P Systems. In Proceedings of the Sec-
ond International Workshop on Peer-to-Peer Systems (IPTPS), Berkeley, CA, USA,
February 2003.

132

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.
A Scalable Content-Addressable Network. In Proceedings of the ACM Symposium
on Communications Architectures and Protocols (SIGCOMM), pages 161-172, San
Diego, CA, USA, August 2001.

Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker. Application-
level Multicast using Content-Addressable Networks. In Proceedings of the Third
International Workshop on Networked Group Communication (NGC), volume 2233
of Lecture Notes in Computer Science, pages 14-29, UCL, London, UK, November
2001.

Jordan Ritter. Why Gnutella ~ Can’t Scale. No, Really.
http://www.darkridge.com/" jpr5/doc/gnutella.html.

Antony Rowstron and Peter Druschel. PAST: A Large-scale, Persistent Peer-to-peer
Storage Utility. In Proceedings of the FEighth Workshop on Hot Topics in Operating
Systems (HotOS-VIII), pages 75-80, Schoss Elmau, Germany, May 2001.

Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware), pages 329—
350, Heidelberg, Germany, November 2001.

Antony Rowstron and Peter Druschel. Storage Management and Caching in PAST, A
Large-scale, Persistent Peer-to-peer Storage Utility. ACM SIGOPS Operating Systems
Review, 35(5):188-201, December 2001.

Antony Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Druschel.
SCRIBE: The design of a large-scale event notification infrastructure. In Proceedings
of the Third International Workshop on Networked Group Communication (NGC),
volume 2233 of Lecture Notes in Computer Science, pages 30-43, UCL, London, UK,
November 2001.

Jared Saia, Amos Fiat, Steven Gribble, Anna Karlin, and Stefan Saroiu. Dynamically
Fault-Tolerant Content Addressable Networks. In Peter Druschel, Frans Kaashoek,
and Antony Rowstron, editors, Proceedings of the First International Workshop on
Peer-to-Peer Systems (IPTPS), volume 2429 of Lecture Notes in Computer Science,
pages 270-279, Cambridge, MA, USA, March 2002.

Stefan Saroiu, Krishna P. Gummadi, Richard J. Dunn, Steven D. Gribble, and
Henry M. Levy. An Analysis of Internet Content Delivery Systems. In Proceedings
of the Fifth Symposium on Operating Systems Design and Implementation (OSDI),
pages 315-327, Boston, MA, USA, December 2002.

Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A Measurement Study
of Peer-to-Peer File Sharing Systems. In Martin G. Kienzle and Prashant J. Shenoy,
editors, Multimedia Computing and Networking (MMCN), volume 4673 of SPIE, pages
156-170, January 2002.

Nima Sarshar and Vwani Roychowdhury. A Random Structure for Op-
timum Cache Size Distributed Hash Table (DHT) Peer-to-Peer Design.
http://arxiv.org/abs/cs.NI/0210010, October 2002.

133

[106]

[107]
[108]

[109]

[110]

[111]

[112]

[113]

[114]
[115]

[116]

[117]

[118]

Robert Sedgewick and Philippe Flajolet. An Introduction to the Analysis of Algo-
rithms. Addison-Wesley, Reading, MA, USA, 1996.

SETI@home. http://setiathome.ssl.berkeley.edu.

Jeffrey Shneidman and David C. Parkes. Rationality and Self-Interest in Peer to
Peer Networks. In Proceedings of the Second International Workshop on Peer-to-Peer
Systems (IPTPS), Berkeley, CA, USA, February 2003.

Bujor Silaghi, Bobby Bhattacharjee, and Pete Keleher. Query Routing in the TerraDir
Distributed Directory. In Victor Firoiu and Zhi-Li Zhang, editors, Proceedings of the
SPIE ITCOM 2002, volume 4868 of SPIE, pages 299-309, Boston, MA, USA, August
2002.

Sridhar Srinivasan and Ellen Zegura. Network Measurement as a Cooperative Enter-
prise. In Peter Druschel, Frans Kaashoek, and Antony Rowstron, editors, Proceedings
of the First International Workshop on Peer-to-Peer Systems (IPTPS), volume 2429
of Lecture Notes in Computer Science, pages 166-177, Cambridge, MA, USA, March
2002.

Tyron Stading, Petros Maniatis, and Mary Baker. Peer-to-peer Caching Schemes to
Address Flash Crowds. In Peter Druschel, Frans Kaashoek, and Antony Rowstron,
editors, Proceedings of the First International Workshop on Peer-to-Peer Systems
(IPTPS), volume 2429 of Lecture Notes in Computer Science, pages 203-213, Cam-
bridge, MA, USA, March 2002.

Ton Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek,
Frank Dabek, and Hari Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Ser-
vice for Internet Applications. IEEE/ACM Transactions on Networking, 11(1):17-32,
February 2003.

Marvin Theimer and Michael B. Jones. Overlook: Scalable Name Service on an
Overlay Network. In Proceedings of the Twenty-Second International Conference on
Distributed Computing Systems (ICDCS), pages 52—-64, Vienna, Austria, July 2002.

ThreeDegrees. http://www.threedegrees.com.

Paul F. Tsuchiya. The Landmark Hierarchy: A New Hierarchy for Routing in Very
Large Networks. In Proceedings of the ACM Symposium on Communications Archi-
tectures and Protocols (SIGCOMM), pages 35-42, Stanford, CA, USA, August 1988.

Leslie Valiant. A Scheme for Fast Parallel Communication. SIAM Journal on Com-
puting, 11(2):350-361, May 1982.

Marc Waldman and David Maziéres. Tangler: A Censorship-Resistant Publishing
System Based on Document Entanglements. In Proceedings of the 8th ACM Confer-
ence on Computer and Communications Security, pages 126-135, Philadelphia, PA,
USA, November 2001.

Marc Waldman, Aviel D. Rubin, and Lorrie Faith Cranor. Publius: A Robust,
Tamper-Evident, Censorship-Resistant Web Publishing System. In Proceedings of
the Ninth USENIX Security Symposium, pages 59-72, Berkeley, CA, USA, August
2000.

134

[119]

[120]

[121]

[122]

[123]

[124]

[125]

Tan H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Compress-
ing and Indexing Documents and Images. Morgan Kaufmann Publishing, Burlington,
MA, USA, May 1999.

Yahoo. http://www.yahoo.com.

Beverley Yang and Hector Garcia-Molina. Improving Search in Peer-to-Peer Sys-
tems. In Proceedings of the Twenty-Second International Conference on Distributed
Computing Systems (ICDCS), pages 5-14, Vienna, Austria, July 2002.

Beverly Yang and Hector Garcia-Molina. Designing a Super-peer Network. In Pro-
ceedings of the Nineteenth International Conference on Data Engineering (ICDE),
pages 49-60, Bangalore, India, March 2003.

Hui Zhang, Ashish Goel, and Ramesh Govindan. Using the Small-World Model to
Improve Freenet Performance. In Proceedings of the Twenty-First Annual Joint Con-
ference of the IEEE Computer and Communications Societies (INFOCOM) (Vol. 3),
pages 1228-1237, New York, NY, USA, June 2002.

Zheng Zhang, Shuming Shi, and Jing Zhu. SOMO: self-organized metadata overlay
for resource management in P2P DHT. In Proceedings of the Second International
Workshop on Peer-to-Peer Systems (IPTPS), Berkeley, CA, USA, February 2003.

Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph. Tapestry: An Infrastructure
for Fault-tolerant Wide-area Location and Routing. Technical Report UCB/CSD-01-
1141, University of California, Berkeley, Berkeley, CA, USA, April 2001.

135

