
Introduction
Related Work

Conclusion

Declarative Languages
(For Building Systems)

Robert Soulé

New York University

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

What is a Declarative Language?

We can broadly classify languages into two categories:

Imperative Languages

von Neuman (C, Ada, Fortran)
scripting (Perl, Python)
object-oriented (C++, Java)

Declarative Languages

functional (Lisp/Scheme, ML, Haskell)
dataflow (Id, Val)
logic, constraint based (Prolog, spreadsheets)
template based (XSLT)

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

What is a Declarative Language?

Exact definition is fuzzy.

Intuitively, they describe the ”what” and not the ”how”.

If algorithm = logic + control then in declarative
programming, programmers give the logic, but not the control.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Types of Declarativity

Languages can be declarative in different ways:

Logic languages (Prolog, Datalog)

Declare relationships
Ask questions about the relationships
Don’t specify how to get the answer

Data oriented languages (Pig Latin, SQL)

Specify criteria for desired data
Don’t specify how to find the data

Dataflow languages (nesC, Click)

Define relationships between components
Encapsulate non-declarative details in the components

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Declarative Languages for Systems

Normally, we think of imperative languages for systems.

Declarative languages can be surprisingly useful.

Free the programmer from implementation details.
Provide better abstractions, concise code.
Offer correctness guarantees, or increased reliability.

Benefits come at a performance cost.

Compiler can implement optimizations to offset this.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overview of this talk

Look at 5 systems that use declarative languages.

Why these 5 systems?

Looking ahead, part 2 of my talk is on my work with Overlog.
Discuss the relationship between Overlog and these systems.
Discuss how each system uses declarative programming.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Outline

1 Introduction

2 Related Work
Overlog

P2

Mace
Pig Latin
Click
nesC

3 Conclusion

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Overlog

Declarative Networking: Language, Execution and
Optimization Boon Thau Loo, Tyson Condie, Minos Garofalakis,
David A. Gay, Joseph M. Hellerstein, Petros Maniatis, Raghu
Ramakrishnan, Timothy Roscoe and Ion Stoica. SIGMOD 2006 1

1This paper discusses the formal semantics of Overlog, but it is worth
examining the background problem first.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

P2 Background

Problem - Difficult to design, build, and deploy overlay
networks.

Goal - Provide a convenient, higher level abstraction for
creating overlay networks.

Solution - Take a cue from databases, and view networking as
database query processing.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

P2 Overview

Every node in the network has a runtime:

In memory database stores tuples.
Messages are sent asynchronously as tuples.
Programs are specified in a logic-based language.

Logic languages are a good fit:

Recursion works well for for network algorithms (shortest path).
Natural to specify routing as a policy.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Logic language

Datalog2 is a logical query language.

Consisting of a series of rules:

A single relational atom, called the head
Followed by the symbol :-, read as “if”
Followed by a body consisting of one or more atoms, called
subgoals, either relational or arithmetic

Subgoals are connected by the logical conjunction.

2More details available upon request.
Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Overlog

Overlog is a logic-based language for networking.

It maps Datalog to a networked setting.

Need to define the syntax and semantics.

Syntax - slightly modified Datalog syntax
Semantics - Datalog semantics in a distributed setting3

3More details available upon request.
Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Overlog Optimizations

Apply traditional Datalog optimizations:

Aggregate Selections
Magic Sets4

Apply distributed systems optimizations:

Query result caching
Opportunistic message sharing

4More details available upon request.
Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Overlog as a Declarative Language

Overlog build distributed systems declaratively:

Declaring data relationships.
Performing actions as a result of those relationships.

Let’s look at another approach...

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Outline

1 Introduction

2 Related Work
Overlog

P2

Mace
Pig Latin
Click
nesC

3 Conclusion

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Mace

Mace: Language Support for Building Distributed Systems
Charles Killian, James W. Anderson, Ryan Braud, Ranjit Jhala,
and Amin Vahdat. PLDI 2007

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Mace

A different solution to a similar problem:

Problem - Building distributed applications is difficult and
error-prone.

Goal - Abstract away many of the challenging details.

Solution - Use a state machine specification for building
systems.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Mace: More detail

Mace is a C++ language extension that structures layered
services as state machines.

The state machine template provides code blocks for
specifying the interface, lower layers, messages, state
variables, inconsistency detection, and transitions.

The Mace compiler provides high level validation of the
architecture design by analyzing the state machine
specifications.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Mace: More detail

Mace offers support for ensuring correctness.

Uses aspects for run time inconsistency and failure detection.

State machine representation facilitates model checking.

MaceMC model checker detects liveness violations.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Mace as a Declarative Language

Mace build distributed systems declaratively:

Encapsulate non-declarative details in the components with
well defined interfaces.

i.e. state machine templates

Declaratively specify program state.

Declaratively specify transitions between states.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Mace vs. P2/Overlog

Lines of code for Chord:

Mace: 250, Overlog: 47, Original: 3400

Safety

Mace SM facilitates model checking.
Open question for Overlog.

Performance

Mace has no clear transition to concurrent execution.
Static analysis of Overlog for concurrent execution.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Mace vs. P2/Overlog

Qualitative argument:

”90 percent of the students successfully completed the project
and a majority expressed a preference for programming in
Mace relative to Java or C++.”

How hard is it to program with Overlog’s logic rules?

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Imperative/Declarative Balance

Systems programmers are used to programming imperatively.

Is it hard for them to think declaratively?

Let’s look at the next system...

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Outline

1 Introduction

2 Related Work
Overlog

P2

Mace
Pig Latin
Click
nesC

3 Conclusion

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Pig Latin

Pig Latin: A Not-So-Foreign Language for Data Processing
Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi
Kumar, Andrew Tomkins. SIGMOD 2008

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Pig Latin

Problem - Need for ad-hoc data analysis on large data sets.

Goal - Create a data processing language that is natural for
systems developers to use.

Solution - Combine declarative SQL-style queries with
procedural programming style.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Pig Latin: More detail

Each line of code performs a single data transformation

Stylistic departure from SQL

Pig Latin offers a nested data model

Violating the first normal form restriction enforced by most
databases.
Allows programmers to use a map-like data structure.

Pig Latin supports user-defined functions.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Pig Latin: More detail

Programs written in Pig Latin are executed on Hadoop.

Different execution platforms possible.

Integrated debugging environment.

Generates concise example data.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Pig Latin: Example

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Pig Latin vs. SQL

Also makes a qualitative argument:

“I much prefer writing in Pig [Latin] versus SQL. The
step-by-step method of creating a program in Pig [Latin] is
much cleaner and simpler to use than the single block method
of SQL. It is easier to keep track of what your variables are,
and where you are in the process of analyzing your data.” -
Jasmine Novak, Engineer, Yahoo!

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Pig Latin: UDFs Revisited

Pig Latin provides standard operators:

grouping, filtering, joining, per-tuple processing

To accommodate specialized data processing tasks:

”extensive support for user-defined functions”
UDFs written in Java
Plans for arbitrary language interface

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Encapsulating Non-Declarative Code

Both Pig Latin’s UDFs and Mace’s templates allow developers
to encapsulate non-declarative code.

Lets look at two final systems that emphasize this model.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Outline

1 Introduction

2 Related Work
Overlog

P2

Mace
Pig Latin
Click
nesC

3 Conclusion

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Click

The Click modular router Eddie Kohler, Robet Morris, Benjie
Chen, John Jannotti, and M. Frans Kaashoek. TOCS 2000

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Click

Problem - Routers are expected to do more than route
packets, and routing policies are under active research.

Goal - Create a framework for building extensible routers.

Solution - Modularize functionality into re-usable components,
and use a data-flow language for connecting components.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Click: More detail

Modularize functionality into re-usable components called
elements.

Each element performs a simple task, such as packet
identification, or queuing.

Reuters are configured by using a domain specific language.

Declare which elements are used, and how they are connected.

Connections between elements may be either push or pull.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Click: Element

Subclass of C++ class Element.

About 20 virtual functions.

Three (push, pull, and run scheduled) are used during router
operation.

The others are used for identification, statistics, configuration,
etc.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Click: Example Element

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Click: Language

Declarative language

Two constructs:

Declarations create elements
Connections show how they should be connected

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Click: Language Example

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Click: Evaluation

Overhead for passing packets between elements and
unnecessarily general element code.

The performance evaluation shows that an almost standards
compliant IP router built with Click performs only slightly
worse than the standard Linux router.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Click: Why is the performance ok?

A preprocessor can validate configurations.

Check that pull elements are connected to pull elements.
Ensure every output has a connection.

A preprocessor can identify optimizations.

Output a new configuration file.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Declarative Compilers

One of the major benefits of declarative languages is that
compilers can do the work for you.

Click’s configuration optimizer.
Mace’s specification verification.
Overlog’s query plan optimization.

Our final system uses this for resource constrained
environments.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

Outline

1 Introduction

2 Related Work
Overlog

P2

Mace
Pig Latin
Click
nesC

3 Conclusion

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

nesC

The nesC Language: A Holistic Approach to Networked
Embedded Systems David Gay, Phil Levis, Rob von Behren, Matt
Welsh, Eric Brewer, and David Culler. PLDI 2003

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

nesC

Problem - Building applications in resource constrained
environments.

Goal - Create a flexible language for programming sensor
networks.

Solution - Use a component model with an emphasis on
concurrency and an event driven architecture.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

nesC: More detail

nesC is a C language extension used to implement TinyOS.

Applications are built from a set of reusable components.

There is no dynamic memory allocation.

Call graph is fully known at compile time.

Allows for accurate program analysis.

Applications are fundamentally event driven.

Compiler ensures no race conditions.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

nesC: Components

TinyOS provides a set of reusable systems components.

Components are either:

Modules provide application code (implementing an interface).
Configurations wire components together.

Most components are software modules, some are wrappers
around hardware.

Unused OS services can be excluded from the application.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

nesC: Interfaces

Components provide and use interfaces.

Interfaces are bidirectional: contain both commands and
events.

Example: Timer interface defines the stop and start
commands, and fired event.

Similar to Mace’s layered state machines.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

nesC: Example

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

nesC: Example

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

TinyOS: Concurrency

Two sources of concurrency in TinyOS:

Tasks are deferred computations that run to completion, and
do not preempt each other.
Events also run to completion, but may preempt other tasks or
events.

No blocking operations

Tasks execute non-preemptively.
Contention is handled by explicit rejection of concurrent
requests.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

nesC: Concurrency

Definition:

Asynchronous Code is code reachable from at least one
interrupt handler.
Synchronous Code is code only reachable from tasks.

Note that:

Synchronous Code is atomic with respect to other
Synchronous Code.
Any update to shared state from an AC is a potential race
condition.
Any update to shared state from an SC that is also update
from AC is a potential race condition.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

nesC: Compiler Support

Use the atomic key word disables interrupts.

Compiler enforces that data accessed by AC is in atomic
statement.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog
Mace
Pig Latin
Click
nesC

nesC: Evaluation

Safety

Race detection caught 103 race conditions, 53 false positives.
Most errors came from non-atomic state transitions.

Performance Improvements

Application call graph eliminates unreachable code and module
boundary crossings.
Inline small functions.
Common subexpression elimination, constant propagation.
Code reduction about 10%, CPU reduction 15% - 34%

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Conclusions

Declarative languages are effective for building systems.

Free the programmer from implementation details.
Provide better abstractions, concise code.
Compiler can offer correctness guarantees, or increased
reliability.

Trade-off between declarativity and implementation necessity.

Need to find the right balance.

Benefits come at a performance cost.

Compiler can implement optimizations to offset this.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

The End

Questions?

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

This slide intentionally left blank

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Datalog

Datalog Tutorial

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Datalog

A First Course in Database systems Jeff Ullman, and Jennifer
Widom. Prentice Hall, 2007
Datalog is a logical query language, consisting of a series of rules.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Datalog Atoms

There are two types of atoms in Datalog.

1 Relational atoms, are predicates that represent relations.

2 Arithmetic atoms are comparisons between two atomic
expressions.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Datalog Rules

1 a single relational atom, called the head,

2 followed by the symbol :-, read as “if”,

3 followed by a body consisting of one or more atoms, called
subgoals, either relational or arithmetic.

Subgoals are connected by the logical conjunction AND and may
contain the optional logical operator NOT .

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Extensional and Intensional Predicates

Extensional Predicates are predicates whose relations are
stored in a database

Intensional Predicates are predicates whose relations are
computed by applying datalog rules

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Safety Condition

Every variable that appears anywhere in the rule must appear in
some non-negated, relational subgoal of the body.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Naive Evaluation

Given an EDB:

1 Start with all IDB relations empty.

2 Instantiate variables of all rules in all possible ways. If all
subgoals become true, infer that the head is true.

3 Repeat step 2 as long as new IDB facts can be inferred

Note that:

Step 2 is finite as long as all rules are safe

The limit of 1-3 is the Least fixed point of the rules and EDB.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Semi Naive Evaluation

1 Initialize IDB relations by using only those rules without IDB
subgoals.

2 Initialize the ∆-IDB relations to be equal to the corresponding
IDB relations.

3 In one round, for each IDB predicate p:
1 Compute new ∆-P by applying each rule for p, but with one

subgoal treated as a ∆-IDB relation and the others treated as
the correct IDB or EDB relation. (Do for all possible choices of
the ∆-subgoal

2 Remove from new ∆-P all facts that are already in P
3 P := P ∪∆P

4 Repeat step 3 until no changes to any IDB relation.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog

Overlog Semantics

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog: More detail

A location specifier is an attribute of type address in a
predicate that indicates the network storage location of each
tuple.

A link relation is a stored (”extensional”) relation
(link(@src ,@dst, ...)) representing the connectivity
information of the network being queried.

Local rules are rules that have the same location specifier in
each predicate, including the head.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog: More detail

A link literal is a relation that appears in the body of a rule
prepended with the ”#” sign.

A link restricted rule is either a local rule, or a rule with the
following properties:

There is exactly one link literal in the body
All other literals have their location specifier set to either the
source or destination field in the link literal.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog: More detail

An NDlog program is a Datalog program with the following
constraints:

1 Location Specificity: Each predicate has a location specifier as
its first attribute.

2 Address Type Safety: A variable that appears once in a rule as
an address type must not appear elsewhere as a non address
type.

3 Stored Link Relations: Link relations never appear in the head
of a rule with a non-empty body. (i.e. they are stored, not
derived).

4 Link Restriction: Any non-local rules in a program are link
restricted by some link relation.

The semantics of NDlog are those of Datalog.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog: More detail

What are those semantics?

Semi-naive fixpoint evaluation.

But applied to a distributed setting:

Buffered Semi-naive Same as SN but a node can start a local
SN iteration at any time its its input queue is non-empty.

Pipelined Semi-naive Same as SN but a node can start a local
SN iteration as soon as a tuple is received.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Overlog

Magic Set

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Magic Set

Cousins of the Same Generation Relation

sg(U,V) means that U and V are cousins, i.e. have a common
ancestor W, and the lines of descent from U to W and U to V
are the same number of generations.

Anyone is their own cousin.

No assumption that parenthood is well organized by levels
(someone can marry their grandchild).

No assumption of unique number of generations between
individuals.

No assumption of acyclic graph.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Magic Set

r1: sg(X,X).
r2: sg(X,Y) :- par(X,X1), par(Y,Y1), sg(X1,Y1).

sg(a,W)?

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Magic Set

Reorder goals so Prolog can terminate:

r2’: sg(X,Y) :- par(X,X1), sg(X1,Y1), par(Y,Y1).

sg(a,W)?

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Magic Set

Top down, ”backward chaining”, Prolog evaluation:

Consider each parent of a (say b and c).

Recursively find all b’s cousins, then c’s cousins, and children
of both.

Since b and c may have ancestors in common, there may be
repeated work.

The running time is exponential to the number of individuals
in the database.

Discovers all ”proofs”, not all ”answers”.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Magic Set

Bottom up, ”forward chaining”, Datalog evaluation:

Start assuming only facts in the database (par relation).

sg is initially an empty set.

Apply the rules, compute the join and union, repeat.

Runs in polynomial time.

Better, but generates many useless facts.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Magic Set

Intuition for optimization:

We only want the ”relevant facts”.

Relevant facts are those that are essential to establishing a
fact in the answer.

If ”d” and ”f” are not an ancestors of ”a”, we don’t care
about sg(d,f).

Thing of a’s cone.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Magic Set

If we encounter a goal sg(b, W), where b is an ancestor of a, and
apply r2, we get the new goal:

par(b,X1), par(W,Y1), sg(X1,Y1).

X1 is a parent of b, and an ancestor of a

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Magic Set

In rules, that looks like:

r3: magic(a).
r4: magic(U) :- magic(V), par(V,U).

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Magic Set

We can re-write r1 and r2 to insist that values of the first
argument of sg are in the magic set.

r5: sg(X,X) :- magic(X).
r6: sg(X,Y) :- magic(X), par(X,X1),

par(Y,Y1), sg(X1,Y1).

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Magic Set

Not quite ”magic”.

There is a general algorithm for finding these sets, and
performing the transformation.

Sometimes, no transformation is desirable.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Relational Algebra

Relational Algebra

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Relational Algebra

The operations of relational algebra can be categorized in four
groups:

1 Set Operations i.e. union, intersection, and difference

2 Operations to remove part of a relation i.e. selection (σ) and
projection (π)

3 Combine tuple of a relation such as Cartesian product and join

4 Renaming Changes the names of the attributes or the name of
the relation

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Other Operations

There are other operations which do not fit into the categories
states above.

1 Group By Group tuples by an attribute

2 Aggregations aggregation operations (MIN, MAX, COUNT,
AVG, SUM) are included in most query languages.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Sets and Bags

We tend to think of the set operations as acting on sets. For
example R ∪ S is the union of R and S . That is, its the set of
elements that are in either R or S . However, if an element is
present in both R and S , it appears only once in the union.
Often, though, in databases, we use bags, which like a set has
unordered elements, but allows more than one occurrence of an
element. One reason for using bags is performance, as it is extra
processing to remove duplicates.

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Relational Algebra and Datalog

Given the schema:

Movies(title, year, length, genre, studioName,
producer)

the Datalog rule

LongMovie (t,y) :- Movie(t,y,l,g,s,p) AND l ≥ 100

is equivalent to the relational algebra expression

LongMovie := πtitle,year (σlength≥100 (Movies))

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Relational Algebra and Datalog

Note that each of the relational-algebra operators can be expressed
by one or more Datalog rules.
For example, union A ∪ B can be expressed as two rules

U(x,y,z) :- A(x,y,z)
U(x,y,z) :- B(x,y,z)

Robert Soulé Depth Qualifying Exam Part 1

Introduction
Related Work

Conclusion

Relational Algebra and Datalog

In standard Datalog, there are no aggregation functions, or group
by functions. Also, there is no support to remove duplicates.
One significant difference between Datalog and relational algebra is
that Datalog can express recursion, while relational algebra cannot.

PATH(X,Y) :- EDGE(X,Y)
PATH(X,Y) :- EDGE(X,Z) and PATH(X,Y)

Robert Soulé Depth Qualifying Exam Part 1

	Introduction
	Related Work
	Overlog
	Mace
	Pig Latin
	Click
	nesC

	Conclusion
	

