
Reusable
Software Infrastructure for
Stream Processing

Robert Soulé
New York University
Thesis Defense

1

Saturday, May 19, 12

Stream Processing
Is Everywhere

Netflix accounts for ~30% of downstream internet traffic.

Algorithmic trading accounts for 50-60% of all trades in the U.S.

A streaming application can predict the onset of sepsis in
premature babies 24 hours sooner than experienced ICU nurses.

2

Saturday, May 19, 12

At the Intersection
of Two Trends

3

Data-
centric

applications

Multicores
and

clusters

Stream
processing

Languages and optimizations
need to adapt

Saturday, May 19, 12

Streaming Languages
and Optimizations

4

Streaming
Languages

Streaming
Optimizations

CQL, StreamIt, Sawzall,
Hancock, Gigascope, Lime, etc.

Fusion, fission, placement,
reordering, etc.

Represent an application as
a graph of streams and operators

Maximize utilization of
available resources

Tailored to the needs of
a particular application domain

Often re-write the
data-flow graph

Saturday, May 19, 12

Stream Processing
Needs Infrastructure

5

Benefits of a intermediate language (IL) are well known

Increase portability

Share optimizations

Streaming needs its own intermediate language

Need to reason across machines

Support different optimizations

Saturday, May 19, 12

Hypothesis

6

An intermediate language designed to meet the
requirements of stream processing

can serve as a common substrate for optimizations;
assure implementation correctness;

and reduce overall implementation effort.

Saturday, May 19, 12

Thesis Components

A catalog of streaming optimizations identifies the requirements
for a streaming IL

A minimal calculus provides a general, formal semantics
and enables reasoning about correctness

An intermediate language provides a practical realization of the
calculus

7

Saturday, May 19, 12

Optimizations Catalog

8

Resolves conflicting terminology (e.g. kernel = operator = box)

Makes assumptions explicit (e.g. stream graph is a forrest)

Identifies the requirements for implementing optimizations

A catalog, but organized
as a reference.

Saturday, May 19, 12

Brooklet Calculus

9

Operators

State

Queue Queue

Names operators and queues: fundamental components

Explicit state and communication: need machinery

Non-deterministic execution: reality of distributed systems

Establishes a formal foundation for an IL

Saturday, May 19, 12

River IL

10

Source
Language

Runtime

River Optimizer

Decouples front-ends from
optimizations: portability and reuse

Concretizes Brooklet: operator
implementations, concurrent
execution, back-pressure

Modular parsers, type-checkers,
code generators

Practical IL for streaming with
a formal semantics

Saturday, May 19, 12

Evaluation

11

Condition Experiment

Meets the requirements
 of stream processing

Serves as a common
substrate for optimization

Assures implementation
correctness

Reduces overall
implementation effort

Front-ends for CQL, StreamIt, Sawzall
and benchmark applications

Operator fusion, fission,
and placement optimizations

Formal translations of three languages,
Safety proofs for three optimizations

Language agnostic optimizations
applied to benchmarks illustrates reuse

Saturday, May 19, 12

Contributions

A systematic exploration of the requirements for a streaming IL

A formal foundation for the design of an IL

An IL with a rigorously defined semantics that decouples front-
ends from optimizations

The first formal semantics for Sawzall

The first distributed implementation of CQL

12

Saturday, May 19, 12

Outline of This Talk

A Catalog of Streaming Optimizations

The Brooklet Core Calculus

River: From a Calculus to an Execution Environment

Related Work

Outlook and Conclusions

13

Saturday, May 19, 12

Optimizations Catalog

Identifying the Requirements for a Streaming IL

14

Saturday, May 19, 12

Optimization Name

15

Safety Profitability

Variations

Dynamism

Preconditions
for correctness

Most influential
published papers

How to optimize at runtime

Key Idea
Graph
Before

Graph
After

Micro-benchmark
Runs on System S
Relative numbers

Central trade-off factor
Th

ro
ug

hp
ut

(h
ig

he
r i

s
be

tte
r)Items highlighted in red will be addressed in this talk

Saturday, May 19, 12

List of Optimizations

16

Operator reordering
Redundancy elimination
Operator separation
Fusion
Fission

Load balancing
Placement
State sharing
Batching
Algorithm Selection

Load shedding

Graph changed

{
Graph unchanged

Se
m

an
tic

s
un

ch
an

ge
d

Se
m

an
tic

s
ch

an
ge

d{
Saturday, May 19, 12

Operator Reordering

17

Safety Profitability

Variations

Dynamism

Commutative
Attributes available

Algebraic
Commutativity analysis
Synergies, e.g. fusion, fission Eddy

Move more selective operators upstream to filter data early.

Saturday, May 19, 12

Redundancy Elimination

18

Safety Profitability

Variations

Dynamism
In many-query case:
share at submission time

Combine or remove redundant operators.

Same algorithm
Data available

Many-query optimization
Eliminate no-op
Eliminate idempotent op
Eliminate dead subgraph

Saturday, May 19, 12

Operator Separation

19

Safety Profitability

Variations

Dynamism

N/A

Break coarse-grained operators into finer steps.

Ensure A1(A2(s)) = A(s)

Algebraic
Using special API
Dependency analysis
Enable Reordering

Saturday, May 19, 12

Fusion

20

Safety Profitability

Variations

Dynamism
Online recompilation
Transport operators

Avoid the overhead of data serialization and transport.

Have right resources
Have enough resources
No infinite recursion

Single vs. multiple threads
Fusion enables traditional
compiler optimizations

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6

T
h

ro
u

g
h

p
u

t

Operator cost / communication cost

Fusion

Not fused

Fused

Saturday, May 19, 12

Fission

21

Safety Profitability

Variations

Dynamism

Parallelize computations.

No state or disjoint state
Merge in order, if needed

Round-robin (no state)
Hash by key (disjoint state)
Duplicate Elastic operators (learn width)

STM (resolve conflicts)

0

2

4

6

1 2 3 4 5 6

T
h

ro
u

g
h

p
u

t

Number of Cores

Fission

p/s/o = 1/1/0
p/s/o = 1/0/1
p/s/o = 1/0/0

Saturday, May 19, 12

Placement

22

Safety Profitability

Variations

Dynamism

Assign operators to hosts and cores.

Have right resources
Have enough resources
Obey license/security
If dynamic, need migratability

Based on host resources vs.
network resources, or both
Automatic vs. user-specified Submission-time

Online, via operator migration

Saturday, May 19, 12

Load Balancing

23

Safety Profitability

Variations

Dynamism

Distribute workload evenly across resources

Avoid starvation
Ensure each worker is
equally qualifies
Establish placement safety

Balancing work while
placing operators
Balancing work by
re-routing data

Easier for routing than
placement

0.0

1.0

2.0

3.0

4.0

0 20 40 60 80

T
h

ro
u

g
h

p
u

t

Percent load on bottleneck replica

Load Balancing

Balanced, 4 replicas
Balanced, 3 replicas
Skewed, 4 replicas

Saturday, May 19, 12

State Sharing

24

Safety Profitability

Variations

Dynamism

Optimize for space by avoiding unnecessary copies of data.

Common access (usually fusion)
No race conditions
No memory leaks

Sharing queues
Sharing windows
Sharing operator state N/A

0.0

0.2

0.4

0.6

0.8

1.0

1

2

4

8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
,0

2
4

T
h

ro
u

g
h

p
u

t
State size in KB

State Sharing

Not shared

Shared

Saturday, May 19, 12

Batching

25

Safety Profitability

Variations

Dynamism

Process multiple data items in a single batch.

No deadlocks
Satisfy deadlines

Batching enables traditional
compiler optimizations Batch controller

Train scheduling

Saturday, May 19, 12

Algorithm Selection

26

Safety Profitability

Variations

Dynamism

Use a faster algorithm for implementing an operator.

Aα(s) ≅ Aβ(s)
May not need to be safe

Algebraic
Auto-tuners
General vs. specialized Compile both versions, then

select via control port

Saturday, May 19, 12

Load Shedding

27

Safety Profitability

Variations

Dynamism

Degrade gracefully when overloaded.

By definition, not safe!
QoS trade-off

Filtering data items
(variations: where in graph)
Algorithm selection Always dynamic

0.0

0.5

1.0

0.00 0.01 0.10 1.00

Selectivity

Load Shedding

Throughput

Accuracy

Saturday, May 19, 12

Optimizations Enable
Optimizations

28

Traditional
→

Stream {
Stream

→
Stream {
Stream

→
Traditional {

Saturday, May 19, 12

Languages Enable
Optimizations

29

Mario
CEP patterns

StreamDatalog
StreamSQL

StreamIt
Graph GUI

SPL
Java API

Annotated C
C/Fortran

High-level
Easy to use
Optimizable

Low-level
General

Predictable

Saturday, May 19, 12

Hand-Optimized vs.
Auto-Optimization

Hand-Optimized

Experts can get
better performance

Better Control

Generality

Easier to build systems

30

Auto-Optimized

Better out-of-the-box
experience

Portability

Application code is
less cluttered

Saturday, May 19, 12

Requirements for an IL

31

Observation Conclusion

4/11 depend on the
order that operators execute

5/11 modify the topology

8/11 depend on state

9/11 have dynamic variations

11/11 have a unique requirement

IL should be explicit how
determinism is enforced

IL needs to model communication

IL needs to model state

IL needs to support dynamism

IL must be extensible

Saturday, May 19, 12

A Universal Calculus
For Stream Processing

A formal foundation for a streaming IL

32

Saturday, May 19, 12

Design Goals

Enable reasoning about correctness of optimizations

Flexibility to represent diverse languages

Formalize three of the requirements:

State, communication, and non-determinism

Save dynamism for future work

Extensibility is addressed in the IL

33

Saturday, May 19, 12

Elements of a Streaming App

34

State

Operator
Queue Queue

Saturday, May 19, 12

Elements of a Streaming App

35

Saturday, May 19, 12

Elements of a Streaming App

36

Not all operators
have state

Saturday, May 19, 12

Elements of a Streaming App

37

Operators may
share state

Saturday, May 19, 12

Requirements for Calculus

38

Saturday, May 19, 12

Requirements for Calculus

38

Make
explicit

Saturday, May 19, 12

Requirements for Calculus

38

Make
explicit

Make
explicit

and 1-to-1

Saturday, May 19, 12

Requirements for Calculus

38

Make
explicit

Make
explicit

and 1-to-1

Make non-
deterministic

Make
trigger non-

deterministic

Saturday, May 19, 12

Requirements for Calculus

38

Make
explicit

Make
explicit

and 1-to-1

Make non-
deterministic

Make
trigger non-

deterministic

Treat
functions as

opaque

Saturday, May 19, 12

Brooklet Syntax

39

Sum

$total

volumetrades

(volume, $total) ← Sum(trades, $total)

Saturday, May 19, 12

Function Environment

40

Sum

$total

volumetrades

F: The function implementations

Sum

Saturday, May 19, 12

Queue Store

41

Sum

$total

volumetrades

Q: The contents of the queues

volumetrades

Saturday, May 19, 12

Variable Store

42

Sum

$total

volumetrades

V: The contents of the variables

$total

Saturday, May 19, 12

Brooklet
Operational Semantics

43

Sum

$total

volumetrades

F┣ <Q, V> → <Q’, V’>

Saturday, May 19, 12

Complete Calculus

44

4 Robert Soulé et al.

Brooklet syntax:
Pb ::= out in op Brooklet program
out ::= output q ; Output declaration
in ::= input q ; Input declaration
op ::= (q, v) ⇥ f (q, v); Operator
q ::= id Queue identifier
v ::= $ id Variable identifier
f ::= id Function identifier

Brooklet example: IBM market maker.
output result;
input bids, asks;
(ibmBids) � SelectIBM(bids);
(ibmAsks) � SelectIBM(asks);
($lastAsk)� Window(ibmAsks);
(ibmSales)� SaleJoin(ibmBids,$lastAsk);
(result,$cnt) � Count(ibmSales,$cnt);

Brooklet semantics: Fb ⌥ �V, Q �⇤ �V �, Q�
d, b = Q(qi)

op = (_, _) ⇥ f(q, v);
(b

�
, d

�
) = Fb(f)(d, i, V (v))

V � = updateV (op, V, d
�
)

Q� = updateQ(op, Q, qi, b
�
)

Fb ⌥ �V, Q �⇤ �V �, Q�
(E-FireQueue)

op = (_, v) ⇥ f(_, _);

updateV (op, V, d) = [v ⇧⇤ d]V
(E-UpdateV)

op = (q, _) ⇥ f(_, _);
df , bf = Q(qf)

Q� = [qf ⇧⇤ bf]Q
Q�� = [⌃qi ⌅q : qi ⇧⇤ Q(qi), bi]Q

�

updateQ(op, Q, qf , b) = Q�� (E-UpdateQ)

Fig. 1. Brooklet syntax and semantics.

3.1 Brooklet Program Example: IBM Market Maker
As an example of a streaming program, we consider a hypothetical application
that trades IBM stock. Data arrives on two input streams, bids(symbol,price)
and asks(symbol,price), and leaves on the result(cnt,symbol,price) output
stream. Since the application is only interested in trading IBM stock, it filters
out all other stock symbols from the input. The application then matches bid
and ask prices from the filtered streams to make trades. To keep the example
simple, we assume that each sale is for exactly one share. The Brooklet program
in the bottom left corner of Fig. 1 produces a stream of trades of IBM stock,
along with a count of the number of trades.

3.2 Brooklet Syntax
A Brooklet program defines a directed, possibly cyclic, graph of operators con-
taining pure functions connected by FIFO queues. It uses variables to explicitly
thread state through operators. Data items on a queue model network packets
in transit. Data items in variables model stored state; since data items may be
lists, a variable may store arbitrary amounts of historical data. The following
line from the market maker application defines an operator:

(ibmSales) � SaleJoin(ibmBids, $lastAsk);

The operator reads data from input queue ibmBids and variable $lastAsk. It
passes that data as parameters to the pure function SaleJoin, and writes the
result to the output queue ibmSales. Brooklet does not define the semantics of
SaleJoin. Modeling local deterministic computations is well-understood [17, 19],
so Brooklet abstracts them away by encapsulating them in opaque functions.
On the other hand, a Brooklet program does define explicit uses of state. In the
example, the following line defines a window over the stream ibmAsks:

($lastAsk) � Window(ibmAsks);

The window contains a single tuple corresponding to the most recent ask for an
IBM stock, and the tuple is stored in the variable $lastAsk. Both the Window and
SaleJoin operators access $lastAsk.

The Window operator writes data to $lastAsk, but does not use the data stored
in the variable in its internal computations. Operators that incrementally update
state must both read and write the same variable, such as in the Count operator:

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

45

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

46

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>

<FNM,1,€1>
<FNM,1,€2>

$lastBid = <FNM,0,0>

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

47

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>

<FNM,1,€1>
<FNM,1,€2>

$lastBid = <FNM,0,0>

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

47

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>

<FNM,1,€1>

<FNM,1,€2>
$lastBid = <FNM,0,0>

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

47

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>

<FNM,1,€1><FNM,1,€2>
$lastBid = <FNM,0,0>

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

48

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>

<FNM,1,€2>

$lastBid = <FNM,1,€1>

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

49

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>

<FNM,1,€2>

$lastBid = <FNM,1,€1>

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

50

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>

<FNM,1,€2>

$lastBid = <FNM,1,€1>

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

50

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0

<FNM,1,€2>

<FNM,1,€2>

$lastBid = <FNM,1,€1>

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

50

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,0,∞> $total = 0<FNM,1,€2>

<FNM,1,€2>

$lastBid = <FNM,1,€1>

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

51

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 0

<FNM,1,€2>

$lastBid = <FNM,1,€1>

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

52

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 0

<FNM,1,€2>

$lastBid = <FNM,1,€1>

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

53

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 0

<FNM,1,€2>

$lastBid = <FNM,1,€1>

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

53

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 0

<FNM,1,€2>

$lastBid = <FNM,1,€1>

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

54

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 0

<FNM,1,€2>

$lastBid = <FNM,1,€1>

<FNM,1,€2>

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

54

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 0

<FNM,1,€2>
$lastBid = <FNM,1,€1>

<FNM,1,€2>

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

55

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 0

$lastBid = <FNM,1,€2>

<FNM,1,€2>

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

56

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2>

<FNM,1,€2>

$total = 0

$lastBid = <FNM,1,€2>

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

56

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2>

<FNM,1,€2>

$total = 0

$lastBid = <FNM,1,€2>

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

56

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2>

<FNM,1,€2>

$total = 0

$lastBid = <FNM,1,€2>

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

57

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 0

$lastBid = <FNM,1,€2>

<FNM,1><FNM,1>

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

57

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 0

$lastBid = <FNM,1,€2>

<FNM,1>

<FNM,1>

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

58

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 1

<FNM,1>

$lastBid = <FNM,1,€2>

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

59

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 1

<FNM,1>

$lastBid = <FNM,1,€2>

Saturday, May 19, 12

Example:
A Fannie Mae Bid/Ask Join

59

SaleJoin Sum

$total

volumetrades

asks

$lastAsk

$lastBid

bid
s

$lastAsk = <FNM,1,€2> $total = 1

<FNM,1>

$lastBid = <FNM,1,€2>

Saturday, May 19, 12

Translations

Demonstrating Brooklet’s generality
by translating three rather diverse streaming languages

60

Saturday, May 19, 12

CQL, StreamIt, Sawzall:
One Translation Approach

61

Expose graph topology

Expose implicit
and explicit state

Functions Queues Variables

Wrap original operators in
higher-order functions

┣ , ><

Saturday, May 19, 12

CQL, StreamIt, Sawzall:
One Translation Approach

61

Expose graph topology

Expose implicit
and explicit state

Functions Queues Variables

Wrap original operators in
higher-order functions

┣ , >

Make
queues explicit

and 1-to-1

<

Saturday, May 19, 12

CQL, StreamIt, Sawzall:
One Translation Approach

61

Expose graph topology

Expose implicit
and explicit state

Functions Queues Variables

Wrap original operators in
higher-order functions

┣ , >

Make
state explicit

Make
queues explicit

and 1-to-1

<

Saturday, May 19, 12

CQL, StreamIt, Sawzall:
One Translation Approach

61

Expose graph topology

Expose implicit
and explicit state

Functions Queues Variables

Wrap original operators in
higher-order functions

┣ , >

Make
state explicit

Make
queues explicit

and 1-to-1Do not
model local

computations

<

Saturday, May 19, 12

Sum

$total

volumeFNM-trades

Filter
trades

Example: CQL to Brooklet

62

select Sum(shares) from trades
where trades.ticker = “FNM”

CQL

Brooklet

Saturday, May 19, 12

Sum

$total

volumeFNM-trades

Filter
trades

Example: CQL to Brooklet

62

select Sum(shares) from trades
where trades.ticker = “FNM”

CQL

Brooklet Make
queues explicit

and 1-to-1

Saturday, May 19, 12

Sum

$total

volumeFNM-trades

Filter
trades

Example: CQL to Brooklet

62

select Sum(shares) from trades
where trades.ticker = “FNM”

CQL

Brooklet

Make
state explicit

Make
queues explicit

and 1-to-1

Saturday, May 19, 12

$total

volumeFNM-trades

Filter
trades

∑

select Sum(shares) from trades
where trades.ticker = “FNM”

Example: CQL to Brooklet

63

CQL

Brooklet

Saturday, May 19, 12

$total

volumeFNM-trades

Filter
trades

∑

select Sum(shares) from trades
where trades.ticker = “FNM”

Example: CQL to Brooklet

63

CQL

Brooklet Dynamically
adapt runtime

arguments

Statically
bind the original

function

Saturday, May 19, 12

Translation
Correctness Theorem

64

CQL/StreamIt Input

Brooklet Input

CQL/StreamIt Output

Brooklet Outputexecute

execute

translatetranslate

Results under CQL and StreamIt semantics are the same as the
results under Brooklet semantics after translation

First formal semantics for Sawzall

Saturday, May 19, 12

Optimizations

Demonstrating Brooklet’s utility
by realizing three essential optimizations

65

Saturday, May 19, 12

Operator Fusion:
Eliminate Queueing Delays

66

Look for connected operators,
 whose state isn’t used anywhere else

before

after

Saturday, May 19, 12

Operator Fission:
Process More Data in Parallel

67

Look for stateless operators

Split Join

before

after

Saturday, May 19, 12

Operator Reordering:
Filter Data Early

68

Look for operators whose read/write sets
don’t overlap [Ghelli et al., SIGMOD 08]

before

after

Filter

Filter

Saturday, May 19, 12

From a Calculus
to an Intermediate Language

The River Intermediate Language

69

Saturday, May 19, 12

An Intermediate Language
for Stream Processing

Benefits of a VEE/IL are well known

Increase portability, share optimizations, etc.

Streaming needs its own IL

Need to reason across machines, support different optimizations

Brooklet serves as a solid foundation

Challenge: How to bridge the gap between theory and practice?

70

Saturday, May 19, 12

Make Abstractions Concrete

71

Brooklet River

Sequence of atomic steps

Pure functions, state
threaded through invocations

Non-deterministic execution

Opaque functions

No physical platform,
independent from runtime

Finite execution

Operators execute concurrently

Stateful functions, protected
with automatic locking

Restricted execution with bounded
queues, and back-pressure

Function implementations

Abstract representation
of runtime e.g. placement

Indefinite execution

Saturday, May 19, 12

Concurrent Execution:
No Shared State

72

O2

$y

O3O1

$x $z

Saturday, May 19, 12

Concurrent Execution:
No Shared State

72

O2

$y

O3O1

$x $z

Single
threaded

Saturday, May 19, 12

Concurrent Execution:
No Shared State

72

O2

$y

O3O1

$x $z

Single
threaded

Atomic queue
operations

Saturday, May 19, 12

Concurrent Execution:
No Shared State

72

O2

$y

O3O1

$x $z

Brooklet operators fire one at a time

River operators fire concurrently

For both, data must be available

Single
threaded

Atomic queue
operations

Saturday, May 19, 12

Concurrent Execution:
With Shared State

73

O2

$y

O3O1

$x $y

Locks form equivalence classes over shared variables

Every shared variable is protected by one lock

Shared variables in the same class protected by same lock

Locks acquired/released in standard order

Saturday, May 19, 12

Concurrent Execution:
With Shared State

73

O2

$y

O3O1

$x $y

Locks form equivalence classes over shared variables

Every shared variable is protected by one lock

Shared variables in the same class protected by same lock

Locks acquired/released in standard order

Minimal
locking

Saturday, May 19, 12

Restricted Execution:
Bounded Queues

74

O2

$y

O3O1

$x $y

Naïve approach: block when output queue is full

If O2 holds the lock on $x and blocks, O3 cannot execute

Deadlock!

Saturday, May 19, 12

Restricted Execution:
Safe Back-Pressure

75

O2

$y

O3O1

$x $y

Saturday, May 19, 12

Restricted Execution:
Safe Back-Pressure

75

O2

$y

O3O1

$x $y1. Acquire
locks

Saturday, May 19, 12

Restricted Execution:
Safe Back-Pressure

75

O2

$y

O3O1

$x $y1. Acquire
locks

2. Fire
operator

Saturday, May 19, 12

Restricted Execution:
Safe Back-Pressure

75

O2

$y

O3O1

$x $y1. Acquire
locks

2. Fire
operator

3. Data
on local
queue

Saturday, May 19, 12

Restricted Execution:
Safe Back-Pressure

75

O2

$y

O3O1

$x $y1. Acquire
locks

2. Fire
operator

3. Data
on local
queue

4. Release
locks

Saturday, May 19, 12

Restricted Execution:
Safe Back-Pressure

75

O2

$y

O3O1

$x $y1. Acquire
locks

2. Fire
operator

3. Data
on local
queue

4. Release
locks

5. Data
on output

queue

Saturday, May 19, 12

Restricted Execution:
Safe Back-Pressure

75

O2

$y

O3O1

$x $y

Only step 5 can block

Locks have already been released, so O3 can execute

Even if downstream is full, there is no deadlock

1. Acquire
locks

2. Fire
operator

3. Data
on local
queue

4. Release
locks

5. Data
on output

queue

Saturday, May 19, 12

Applications of an
Intermediate Language

Must make language development economic

Implementation language, language modules, operator templates

Must support a broad range of optimizations

Annotations provide additional information between source and IL

76

Saturday, May 19, 12

Function Implementations
and Translations

77

logs : {origin : string; target : string} stream;
hits : {origin : string; count : int} stream =
 select istream(origin, count(origin))
 from logs [range 300]
 where origin != target

Pre-existing
operator templates Bag.filter (fun x -> #expr)

Bag.filter (fun x -> origin != target)

Expose operators,
communication,
and state{

Select Range Aggr IStream
$win $count

Saturday, May 19, 12

Translations with Modules

78

select istream(*)
from quotes[now], history
where quotes.ask <= history.low
and quotes.ticker = history.ticker

CQL
Analyzer

SQL
Analyzer

Expression
Analyzer

Symbol
Table

has-a has-a

has-a
is-a

Saturday, May 19, 12

Translations with Modules

79

CQL
Analyzer

SQL
Analyzer

Expression
Analyzer

Symbol
Table

has-a has-a

has-a

select istream(*)
from quotes[now], history
where quotes.ask <= history.low
and quotes.ticker = history.ticker

is-a

CQL = SQL + Streaming + Expressions

Saturday, May 19, 12

Optimization Support:
Extensible Annotations

80

Source
Language

Runtime

River Optimizer

Establishes properties
by construction
e.g. Sawzall reducers commute {

Establishes constraints,
e.g. available resources{

Needs to know:
- Safety constraints
- Profitability {

Saturday, May 19, 12

Optimization Support:
Extensible Annotations

80

Source
Language

Runtime

River Optimizer

Establishes properties
by construction
e.g. Sawzall reducers commute {

Establishes constraints,
e.g. available resources{

Annotations
convey

this information

Needs to know:
- Safety constraints
- Profitability {

Saturday, May 19, 12

Optimization Support:
Extensible Annotations

80

Source
Language

Runtime

River Optimizer

Establishes properties
by construction
e.g. Sawzall reducers commute {

Establishes constraints,
e.g. available resources{

Annotations
convey

this information

Needs to know:
- Safety constraints
- Profitability {

Separate policy
from mechanism

Saturday, May 19, 12

Optimization Support:
Current Annotations

81

Annotation Description Optimization

@Fuse(ID) Fuse operators with same ID in
the same process Fusion

@Parallel() Perform fission on an operator Fission

@Commutative() An operator’s function is
commutative Fission

@Keys(k1,...,kn)
An operator’s state is

partitionable by the key fields
k1,...,kn

Fission

@Group(ID) Place operators with same ID
on the same machine Placement

Saturday, May 19, 12

Evaluation

Four benchmark applications

CQL Linear Road

StreamIt FM Radio

Sawzall Batch Web Log
Analyzer

CQL Continuous Web Log
Analyzer

82

Three optimizations

Placement

Fission

Fusion

Saturday, May 19, 12

Distributed Linear Road

83

now
proj

ect

istre

am

dup

split

ran

ge

join

istre

am

aggre

gate

join

se

lect

join

ran

ge

parti

tion

proj

ect

dis

tinct

dup-

split

now

proj

ect

aggre

gate

pro

ject

pro

ject

rstre

am

First distributed CQL implementation

Saturday, May 19, 12

CQL Parallelization
Has Limited Effect

84

0

1

2

3

 2 4 8 16

1.00
1.47

1.86
2.09 2.15

CQL Log Analyzer Speedup

0

1

2

3

1 2 4

1.00

1.84
2.12

Linear Road Speedup

2.12x speedup on 4 machines

Limited task and pipeline
parallelism

2.15x speedup on 16 machines

Synchronization is bottleneck

Saturday, May 19, 12

Reusable
Optimizations

85

0

1

1

2

1 2 4

1.00

1.48

1.84

FM Radio Speedup

StreamIt FM Radio can re-use the placement optimization

1.84x speedup on 4 machines

Saturday, May 19, 12

MapReduce on River
Scales (Almost) Linearly

86

1

10

100

 2 4 8 16 32 641.00
1.63

3.21
6.26

10.77 13.82
18.93

Our Sawzall uses the same data-parallelism optimizer as CQL

10.77x speedup on 16 machines, 18.93x speedup on 64 cores

Sawzall Speedup

Saturday, May 19, 12

Related Work

87

Saturday, May 19, 12

Related Work

88

This%Thesis%

Stream%processing%
Run3me%for%
execu3ng%IL%
on%pla9orms%

Translators%from%
languages%to%IL%

SVM%
Labonte%et%al.%

PACT’04%

CQL%
Arasu%et%al.%
VLDB%J.’06%

PICode%
Nelson%
CC’79%

Saturday, May 19, 12

Comparison to Traditional ILs

89

Stream processing

Runtime for
executing IL
on platforms

Translators from
languages to IL

P-Code
Nelson
CC’79

+

Traditional IL River IL

For Pascal, Java, C# For StreamSQL, Sawzall, StreamIt

IL is lower-level IL for explicit streaming topology

Data at rest (registers) Data in motion (queues)

Instructions that run in a sequence,
one after the other

Functions that run in parallel,
continuously

Saturday, May 19, 12

Comparison to CQL

90

Stream processing
Runtime for
executing IL
on platforms

Translators from
languages to IL

+ CQL
Arasu et al.
VLDB J.’06

CQL River IL

Described in terms of SRA
(stream-relational algebra)

Uses more general streaming IL
(not restricted to relational)

Inter-dependent with a single runtime Virtual, independent of
any particular runtime

Saturday, May 19, 12

Comparison to SVM

91

Stream
processing

Runtime
for
executing
IL on
platforms

Translators from
languages to IL

+

SVM$
Labonte$
et$al.$

PACT’04$

SVN River IL

Missing translators from
any language

Translation by recursion over
syntax, making state explicit,
encapsulating computation in

functions

Synchronous, assumes
centralized controller

Asynchronous,
no centralized controller

Assumes machine model
with shared memory and

CPUs

Abstracts away streaming
runtime (may even be a

distributed cluster)

Saturday, May 19, 12

Conclusions

92

Saturday, May 19, 12

Limitations

93

Component Limitations or
Future Work

Optimizations Catalog

Brooklet

River

Interaction of optimizations, compiler
analysis, standard benchmarks

Relationship to other calculi, time
constraints, more optimizations,

dynamism

Support for dynamism, performance,
design of new languages

Saturday, May 19, 12

Conclusion

Stream processing is crucial, and needs software infrastructure

Identify requirements with a catalog of optimizations

Provide a formal foundation with a calculus

Design a practical IL with a rigorous semantics

Overall this work:

Enables further advances in language and optimizations design

Encourages innovation in stream processing

94

Saturday, May 19, 12

95

Saturday, May 19, 12

CQL Translation Rules

96

A Universal Calculus for Stream Processing Languages 7

4 Language Mappings

We demonstrate Brooklet’s generality by mapping three streaming languages
CQL, StreamIt, and Sawzall to it. Each translation exposes implicit uses of state
as explicit variables; exposes a mechanism for implementing global determinism
on top of an inherently non-deterministic runtime; and abstracts away local
deterministic computations with higher-order wrappers that statically bind the
original function and dynamically adapt the runtime arguments (thus preserving
small step semantics).

4.1 CQL and Stream-Relational Algebra
CQL syntax:

Pc ::= Pcr | Pcs CQL program
Pcr ::= (Relation query)

RName Relation name
| S2R(Pcs) Stream to relation
| R2R(Pcr) Relation to relation

Pcs ::= (Stream query)
SName Stream name

| R2S(Pcr) Relation to stream
RName | SName ::= id Input name
S2R | R2R | R2S ::= id Operator name

CQL example: Bargain finder.
IStream(BargainJoin(Now(quotes), history))

CQL program translation: [[Fc, Pc]]pc = ↵Fb, Pb�
[[Fc, SName]]pc = , outputSName;inputSName;•

(Tp
c -SName)

[[Fc, RName]]pc = , outputRName;inputRName;•
(Tp

c -RName)

Fb, output qo; input q; op = [[Fc, Pcs]]pc
q⇥o = freshId() v = freshId()

F ⇥
b = [S2R ⌃⇤ wrapS2R(Fc(S2R))]Fb

op⇥ = op, (q⇥o, v) ⇥ S2R(qo, v);

[[Fc, S2R(Pcs)]]pc = F ⇥
b, output q⇥o; input q; op⇥

(Tp
c -S2R)

Fb, output qo; input q; op = [[Fc, Pcr]]pc
q⇥o = freshId() v = freshId()

F ⇥
b = [R2S ⌃⇤ wrapR2S(Fc(R2S))]Fb

op⇥ = op, (q⇥o, v) ⇥ R2S(qo, v);

[[Fc, R2S(Pcr)]]pc = F ⇥
b, output q⇥o; input q; op⇥

(Tp
c -R2S)

Fb, output qo; input q; op = [[Fc, Pcr]]pc
n = |Pcr| q⇥o = freshId() q⇥ = q1, . . . , qn

⌥i ⌅ 1 . . . n : vi = freshId() op⇥ = op1, . . . , opn

F ⇥
b = [R2R ⌃⇤ wrapR2R(Fc(R2R))](⌦Fb)

op⇥⇥ = op⇥, (q⇥o, v) ⇥ R2R(qo, v);

[[Fc, R2R(Pcr)]]pc = F ⇥
b, output q⇥o;input q⇥;op⇥⇥

(Tp
c -R2R)

CQL domains:

⇤⌅T Time
e⌅T P Tuple
⇥⌅� = bag(T P) Instantaneous relation
r⌅R = T ⇤ � Time-varying relation
s⌅S = bag(T P�T) Time-varying stream

. .
CQL operator signatures:

S2R : S � T ⇤ �
R2S : � � � ⇤ �
R2R : �n ⇤ �

. .
CQL operator wrapper signatures:

S2R : (� � T) � {1}� S ⇤ (� � T) � S
R2S : (� � T) � {1}� � ⇤ (� � T) � �
R2R : (� � T) � {1 . . . n}� (2��T)n

⇤ (� � T) � (2��T)n

CQL operator wrappers:
⇥, ⇤ = dq s = dv

s⇥ = s ⌦ {↵e, ⇤� : e ⌅ ⇥} ⇥⇥ = f(s⇥, ⇤)

wrapS2R(f)(dq, _, dv) = ↵⇥⇥, ⇤�, s⇥

(Wc-S2R)

⇥, ⇤ = dq ⇥⇥ = dv ⇥⇥⇥ = f(⇥, ⇥⇥)

wrapR2S(f)(dq, _, dv) = ↵⇥⇥⇥, ⇤�, ⇥
(Wc-R2S)

⇥, ⇤ = dq d⇥i = di ⌦ {↵⇥, ⇤�}
⌥j ⇧= i ⌅ 1 . . . n : d⇥j = dj

�j ⌅ 1 . . . n : @⇥ : ↵⇥, ⇤� ⌅ dj

wrapR2R(f)(dq, i, d) = •, d
⇥

(Wc-R2R-Wait)

⇥, ⇤ = dq d⇥i = di ⌦ {↵⇥, ⇤�}
⌥j ⇧= i ⌅ 1 . . . n : d⇥j = dj

⌥j ⌅ 1 . . . n : ⇥j = aux(dj , ⇤)

wrapR2R(f)(dq, i, d) = ↵f(⇥), ⇤�, d
⇥

(Wc-R2R-Ready)

↵⇥, ⇤� ⌅ d

aux(d, ⇤) = ⇥
(Wc-R2R-Aux)

Fig. 2. CQL semantics on Brooklet.

CQL, the Continuous Query Language, is a member of the StreamSQL family
of languages. StreamSQL gives developers who are familiar with SQL’s select-
from-where syntax an incremental learning path to stream programming. This
paper uses CQL to represent the entire StreamSQL family, because it has a clean
design, has made significant impact [1], and has a formal semantics [2].

A Universal Calculus for Stream Processing Languages 7

4 Language Mappings

We demonstrate Brooklet’s generality by mapping three streaming languages
CQL, StreamIt, and Sawzall to it. Each translation exposes implicit uses of state
as explicit variables; exposes a mechanism for implementing global determinism
on top of an inherently non-deterministic runtime; and abstracts away local
deterministic computations with higher-order wrappers that statically bind the
original function and dynamically adapt the runtime arguments (thus preserving
small step semantics).

4.1 CQL and Stream-Relational Algebra
CQL syntax:

Pc ::= Pcr | Pcs CQL program
Pcr ::= (Relation query)

RName Relation name
| S2R(Pcs) Stream to relation
| R2R(Pcr) Relation to relation

Pcs ::= (Stream query)
SName Stream name

| R2S(Pcr) Relation to stream
RName | SName ::= id Input name
S2R | R2R | R2S ::= id Operator name

CQL example: Bargain finder.
IStream(BargainJoin(Now(quotes), history))

CQL program translation: [[Fc, Pc]]pc = ↵Fb, Pb�
[[Fc, SName]]pc = , outputSName;inputSName;•

(Tp
c -SName)

[[Fc, RName]]pc = , outputRName;inputRName;•
(Tp

c -RName)

Fb, output qo; input q; op = [[Fc, Pcs]]pc
q⇥o = freshId() v = freshId()

F ⇥
b = [S2R ⌃⇤ wrapS2R(Fc(S2R))]Fb

op⇥ = op, (q⇥o, v) ⇥ S2R(qo, v);

[[Fc, S2R(Pcs)]]pc = F ⇥
b, output q⇥o; input q; op⇥

(Tp
c -S2R)

Fb, output qo; input q; op = [[Fc, Pcr]]pc
q⇥o = freshId() v = freshId()

F ⇥
b = [R2S ⌃⇤ wrapR2S(Fc(R2S))]Fb

op⇥ = op, (q⇥o, v) ⇥ R2S(qo, v);

[[Fc, R2S(Pcr)]]pc = F ⇥
b, output q⇥o; input q; op⇥

(Tp
c -R2S)

Fb, output qo; input q; op = [[Fc, Pcr]]pc
n = |Pcr| q⇥o = freshId() q⇥ = q1, . . . , qn

⌥i ⌅ 1 . . . n : vi = freshId() op⇥ = op1, . . . , opn

F ⇥
b = [R2R ⌃⇤ wrapR2R(Fc(R2R))](⌦Fb)

op⇥⇥ = op⇥, (q⇥o, v) ⇥ R2R(qo, v);

[[Fc, R2R(Pcr)]]pc = F ⇥
b, output q⇥o;input q⇥;op⇥⇥

(Tp
c -R2R)

CQL domains:

⇤⌅T Time
e⌅T P Tuple
⇥⌅� = bag(T P) Instantaneous relation
r⌅R = T ⇤ � Time-varying relation
s⌅S = bag(T P�T) Time-varying stream

. .
CQL operator signatures:

S2R : S � T ⇤ �
R2S : � � � ⇤ �
R2R : �n ⇤ �

. .
CQL operator wrapper signatures:

S2R : (� � T) � {1}� S ⇤ (� � T) � S
R2S : (� � T) � {1}� � ⇤ (� � T) � �
R2R : (� � T) � {1 . . . n}� (2��T)n

⇤ (� � T) � (2��T)n

CQL operator wrappers:
⇥, ⇤ = dq s = dv

s⇥ = s ⌦ {↵e, ⇤� : e ⌅ ⇥} ⇥⇥ = f(s⇥, ⇤)

wrapS2R(f)(dq, _, dv) = ↵⇥⇥, ⇤�, s⇥

(Wc-S2R)

⇥, ⇤ = dq ⇥⇥ = dv ⇥⇥⇥ = f(⇥, ⇥⇥)

wrapR2S(f)(dq, _, dv) = ↵⇥⇥⇥, ⇤�, ⇥
(Wc-R2S)

⇥, ⇤ = dq d⇥i = di ⌦ {↵⇥, ⇤�}
⌥j ⇧= i ⌅ 1 . . . n : d⇥j = dj

�j ⌅ 1 . . . n : @⇥ : ↵⇥, ⇤� ⌅ dj

wrapR2R(f)(dq, i, d) = •, d
⇥

(Wc-R2R-Wait)

⇥, ⇤ = dq d⇥i = di ⌦ {↵⇥, ⇤�}
⌥j ⇧= i ⌅ 1 . . . n : d⇥j = dj

⌥j ⌅ 1 . . . n : ⇥j = aux(dj , ⇤)

wrapR2R(f)(dq, i, d) = ↵f(⇥), ⇤�, d
⇥

(Wc-R2R-Ready)

↵⇥, ⇤� ⌅ d

aux(d, ⇤) = ⇥
(Wc-R2R-Aux)

Fig. 2. CQL semantics on Brooklet.

CQL, the Continuous Query Language, is a member of the StreamSQL family
of languages. StreamSQL gives developers who are familiar with SQL’s select-
from-where syntax an incremental learning path to stream programming. This
paper uses CQL to represent the entire StreamSQL family, because it has a clean
design, has made significant impact [1], and has a formal semantics [2].

Saturday, May 19, 12

Operator Fission

97

A Universal Calculus for Stream Processing Languages 15

Theorem 1 (CQL translation correctness). For all CQL function environ-
ments Fc, programs Pc, and inputs Ic, the results under CQL semantics are the
same as the results under Brooklet semantics after translation [[Fc, Pc]]pc .

Theorem 2 (StreamIt translation correctness). For all StreamIt function
environments Fs, programs Ps, and inputs Is, the results under StreamIt se-
mantics are the same as the results under Brooklet semantics after translation
[[Fs, Ps]]ps.

5 Optimizations
The previous section used our calculus to understand how a language maps to
an execution platform. This section uses our calculus to specify how to use three
vital optimizations: data-parallel computation, operator fusion, and operator re-
ordering. Each optimization comes with a correctness theorem; for space reasons,
we leave the proofs to an extended technical report [22].
5.1 Data Parallelism
If an operation is commutative across data items, then the order in which the
data items are processed is irrelevant. MapReduce uses this observation to ex-
ploit the collective computing power of a cluster for analyzing extremely large
data sets [5]. The input data set is partitioned, and copies of the map operator
process the partitions in parallel. In general, the challenge in exploiting such
data parallelism is determining if an operator commutes. Sawzall and StreamIt
solve this challenge by restricting the programming model. In Brooklet, commu-
tativity analysis can be performed with a simple code inspection. Since a pure
function always commutes4, and all state in Brooklet is explicit in an operator’s
signature, a su�cient condition for introducing data-parallelism is that an oper-
ator does not access variables. The transformation must ensure that the output
data is combined in the same order that the input data was partitioned. Brooklet

can use the round-robin splitter and joiner described in the StreamIt transla-
tion for this purpose. Thus, the operator (out)�wrapMap-LatLong(q); can be
parallelized with N = 3 copies like this:
(q1, q2, q3, $sc) � Split(q, $sc);
(q4) � wrapMap-LatLong(q1);
(q5) � wrapMap-LatLong(q2);
(q6) � wrapMap-LatLong(q3);
(out, $v4, $v5, $v6, $jc) � Join(q4, q5, q6, $v4, $v5, $v6, $jc);

The following rule describes how to create the new program with N duplicates
of the parallelized operator.

op = (qout) ⇥ f(qin);
⇧i ⌅ 1 . . . n : qi = freshId() ⇧i ⌅ 1 . . . n : q0

i = freshId()
F 0

b, ops = [[⌃, split roundrobin, q, qin]]ps
⇧i ⌅ 1 . . . n : opi = (q0

i) ⇥ f(qi);
F 00

b , opj = [[⌃, join roundrobin, qout , q
0]]ps

�Fb, op �⇤N
split �Fb ⌥ F 0

b ⌥ F 00
b , ops op opj

(Ob-Split)

4 At least in the mathematical sense; in systems, floating point operations do not
always commute.

Saturday, May 19, 12

Dynamism

98

Compile
time

Submission
time

Runtime
disruptive

Runtime
nimble

Operator
separation

Redundancy
elimination

Load
balancing

Operator
reordering

Fusion Fission Batching

State
sharing Placement Load

shedding
Algorithm
selection

Saturday, May 19, 12

