This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING

Merlin: A Language for Managing
Network Resources

Robert Soulé™, Shrutarshi Basu, Parisa Jalili Marandi, Fernando Pedone,
Robert Kleinberg, Emin Giin Sirer, and Nate Foster

Abstract— This paper presents Merlin, a framework for man-
aging resources in software-defined networks. With Merlin,
administrators express high-level policies using programs in a
declarative language. The language includes logical predicates to
identify sets of packets, regular expressions to encode forwarding
paths, and arithmetic formulas to specify bandwidth constraints.
The compiler maps these policies into a constraint problem
that determines bandwidth allocations using parametrizable
heuristics. It then generates a code that can be executed on
the network elements to enforce the policies. To allow network
tenants to dynamically adapt policies to their needs, Merlin
provides mechanisms for delegating control of sub-policies and
for verifying that modifications made to sub-policies do not
violate global constraints. Experiments demonstrate the expres-
siveness and effectiveness of Merlin on realistic scenarios. Overall,
Merlin simplifies network administration by providing high-level
abstractions for specifying and enforcing network policies.

Index Terms— Software-defined networking, resource manage-
ment, policy delegation, formal verification.

I. INTRODUCTION

ETWORK operators today must deal with a wide
Nrange of challenges from complex policies to a pro-
liferation of heterogeneous devices to ever-growing traffic
demands. Software-defined networking (SDN) provides tools
for addressing these challenges, but existing APIs for program-
ming SDNs are too low-level, making it difficult to effectively
enforce network-wide policies. As a result, there is widespread
interest in academia and industry in higher-level languages
and “northbound” (i.e., application-facing) APIs that provide
convenient control over network resources.

Unfortunately, current SDN languages focus mostly on
packet forwarding and largely ignore issues such as band-
width and functionality that must be implemented on mid-
dleboxes or using custom hardware [1]-[5]. Although there
exist orchestration frameworks that provide mechanisms for

Manuscript received August 2, 2016; revised June 5, 2017 and December 6,
2017; accepted July 31, 2018; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor Y. Chen. This work was supported in part by Swiss
NSF under Grant 200021_166132, in part by NSF under Grant CNS-1561209
and Grant CNS-1518779, Grant CNS-1111698, Grant CCF-1253165,
Grant CNS-1413972, Grant CCF-1422046, Grant ACI-1440744, and Grant
CCF-1535952, in part by ONR under Grant NOOO14-15-1-2177, in part by
Cisco, in part by Facebook, in part by Fujitsu, and in part by Google. This
work was done while S. Basu was at Cornell University. (Corresponding
author: Robert Soulé.)

R. Soul€ and F. Pedone are with the Faculty of Informatics, Universita della
Svizzera italiana, 6904 Lugano, Switzerland (e-mail: robert.soule@usi.ch).

S. Basu is with the School of Engineering and Applied Sciences, Harvard
University, Cambridge, MA 02138 USA.

P. J. Marandi is with Microsoft Research Cambridge, Cambridge CB1 2FB,
U.K.

R. Kleinberg, E. G. Sirer, and N. Foster are with the Department of
Computer Science, Cornell University, Ithaca, NY 14853 USA.

Digital Object Identifier 10.1109/TNET.2018.2867239

handling a larger set of concerns including middlebox place-
ment and traffic engineering [6]—[9], they either fail to provide
a programmable API to those mechanisms, or expose APIs
that are extremely simple—e.g., sequences of middleboxes.
As the current interest in “intent-based” networking demon-
strates [10], the challenges of managing networks using current
APIs remain unmet.

This paper presents Merlin, an SDN language designed to
fill this gap. Merlin provides high-level programming con-
structs for (i) classifying packets; (ii) controlling forward-
ing paths; (iii) specifying packet-processing functions; and
(iv) provisioning bandwidth. These features go far beyond
what can be realized using SDN switches or with existing
languages like Frenetic [1], Pyretic [11], and Maple [3].

The Merlin compiler uses several advanced techniques to
compute forwarding paths, map packet-processing functions
to network elements, and allocate bandwidth. These tech-
niques are based on a unified logical representation of the
network that encodes both the physical topology and the
policy. For traffic with bandwidth constraints, the compiler
uses a mixed-integer program formulation to solve a variant
of the multi-commodity flow optimization problem. For traffic
without bandwidth constraints, Merlin leverages properties of
regular expressions and finite automata to efficiently generate
forwarding trees that respect the path constraints encoded in
the logical topology. Handling these two types of traffic sep-
arately allows the compiler to provide a uniform interface to
programmers while reducing the size and number of expensive
constraint problems it must solve. The compiler generates
configurations for a variety of network elements including
switches, middleboxes, and end hosts.

Although the configurations emitted by the Merlin com-
piler are static, the system also incorporates mechanisms for
handling dynamically changing policies. Run-time compo-
nents called negotiators communicate among themselves to
dynamically adjust bandwidth allocations and verify that the
modifications made by other negotiators do not lead to policy
violations. Again, the design of Merlin’s policy language plays
a crucial role. The same core constructs used by the compiler
for mapping policies into a constraint problem provide a
concrete basis for analyzing, processing, and verifying policies
modified dynamically by negotatiors.

We have built a Merlin prototype, and used it to implement
a variety of policies that illustrate the expressiveness of the
language. These examples demonstrate that Merlin supports
a wide range of network functionality including simple for-
warding policies, policies that include bandwidth constraints,
and richer packet-processing functions such as deep-packet

1063-6692 (© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2825-6660
Robert Soule

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2
Metavariables
Locations | Values v
Network functions t Variables x
Header fields f Natural numbers n
Syntax
Bandwidih expressions e :=n|xz|e+e
Presburger formulas ¢ ::= max(e,n) | min(e,n)
| o1 and @2 | @1 or ¢ |! @1
Predicates p ::=p; and p2 | p1 or pa |! p1
| f=v]|true| false
Path Expressions a ==.|l|t|aa|ala|a*|!a
Statements s i=x:p—T
Policies pol ::= [s1;...;8n], &
Fig. 1. Merlin abstract syntax.

inspection. We have also implemented negotiators that realize
max-min fair sharing and additive-increase multiplicative-
decrease dynamic adaptation schemes. Our evaluation shows
that the compiler can generate configurations for real-world
datacenter and enterprise networks, and that Merlin can be
used to obtain better application performance for data analytics
and replication systems.

Overall, this paper makes the following contributions:

o It presents the design of high-level network management
abstractions realized in an expressive policy language
that expresses packet classification, forwarding, and band-
width.

o It describes novel compilation algorithms that com-
pute forwarding paths and allocate bandwidth using a
mixed-integer program formulation.

o It develops techniques for dynamically adapting and
verifying policies using negotiators, made possible by the
language design.

This paper extends our earlier workshop [12] and conference
papers [13] with expanded discussions of the optimization
problem and negotiator design, additional examples, and a new
experiment exploring the impact of function placement. The
next section introduces Merlin’s features using examples.

II. LANGUAGE DESIGN

The Merlin policy language offers constructs for specifying
the behavior of the network using high-level abstractions
inspired by intent-based networking [10], [14], while retain-
ing precise control over forwarding paths and bandwidth.
As an example to illustrate, suppose that we want to place
a bandwidth cap on FTP traffic, while providing a bandwidth
guarantee to HTTP traffic. We can encode this behavior into
Merlin using several policy statements, each of which is
annotated with a variable encoding the amount of bandwidth
used by matching packets:

[x : (ip.src = 192.168.1.1 and
ip.dst = 192.168.1.2 and
tep.dport = 20) -> . dpi .* ;
y : (ip.src = 192.168.1.1 and
ip.dst = 192.168.1.2 and
tep.dport = 21) —> .x
z : (ip.src = 192.168.1.1 and
ip.dst = 192.168.1.2 and
tcp.dport = 80) -> .* dpi *. nat .*],
max(x + y,50MB/s) and min(z,100MB/s)

IEEE/ACM TRANSACTIONS ON NETWORKING

The statement on the first line asserts that FTP traffic (TCP
port 20) from the host at 1P address 192.168.1.1 to the host at
address 192.168.1.2 must travel along a path that includes a
packet-processing function that performs deep-packet inspec-
tion (dpi). The next two statements identify and constrain FTP
control (TCP port 21) and HTTP (TCP port 80) traffic between
the same hosts. The statement for FTP control traffic does not
include any constraints on its forwarding path, while the HTTP
statement includes both a deep-packet inspection (dpi) and
a network address translation (nat) constraint. The formula
on the final line declares a bandwidth cap (max) on the FTP
traffic, and a bandwidth guarantee (min) for the HTTP traffic.
Note that network functions may modify packet headers—e.g.,
the nat function rewrites IP addresses. To allow such functions
to coexist with predicates on packet headers that identify sets
of traffic, Merlin uses a tag-based routing scheme, as explained
in Section III-D.

Formally, the syntax of the Merlin policy language is
defined by the grammar in Figure 1. A policy is a set of
statements and a logical formula. Each statement specifies
the handling of a subset of traffic and the formula expresses
a global bandwidth constraint. We require that the state-
ments have disjoint predicates and together match all packets.
In our implementation, these requirements are enforced by the
compiler.

Statements: Each Merlin policy statement has several
components: a variable, a logical predicate, and a regular
expression. The variable provides a way to identify the total
amount of bandwidth consumed by packets matching the
predicate, while the regular expression specifies the forwarding
paths and packet-processing functions that should be applied
to these packets.

Logical Predicates: Merlin provides a rich predicate
language for classifying packets. Atomic predicates (f = v)
denote the set of packets whose header field f is equal to v.
For instance, in the example policy above, statement z contains
the predicate that matches packets with ip source address
192.168.1.1, destination address 192.168.1.2, and tcp port
80. Merlin provides atomic predicates for standard protocols
including Ethernet, 1P, TCP, and UDP, and a special predicate
for matching packet payloads. Predicates can be combined
using conjunction (and), disjunction (or), and negation (!).

Regular Expressions: Merlin programmers specify for-
warding paths using regular expressions. While standard reg-
ular expressions match strings of characters, Merlin regular
expressions match sequences of locations (1) or network
functions (t)—e.g., deep packet inspection, network address
translation, content caching, proxying, traffic shaping, etc.
As with POSIX regular expressions, dot (.) matches an arbi-
trary path element. The compiler determines the locations
where each function can be enforced, using a mapping from
function names to possible locations supplied as an input. It is
free to select any matching path, provided the other constraints
expressed by the policy are satisfied. Network functions
must satisfy two restrictions: (i) they may only generate
zero or more packets as output, and (ii) they may only access
local state, which allows the compiler to freely place functions
on network devices without having to worry about maintaining

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SOULE et al.: MERLIN: LANGUAGE FOR MANAGING NETWORK RESOURCES

global state. We assume that the set of all locations and
network functions is finite.

Bandwidth Constraints: Merlin policies use logical for-
mulas to specify constraints that either limit (max) or guarantee
(min) bandwidth. In addition to conjunction (and), disjunction
(or), and negation (!), Merlin supports an addition operator.
The addition operator can be used to specify an aggregate cap
on traffic, such as in the max(x + y, 50MB/s) term from the
running example. By convention, policies without a rate clause
are unconstrained. Policies that lack a minimum rate are not
guaranteed any bandwidth, while policies that lack a maximum
rate may send traffic at rates up to line speed. Bandwidth con-
straints are expressed in Presburger arithmetic—a decidable
theory of first-order logic that includes addition but excludes
multiplication.

Intuitively, a formula specifies the rate at which sources of
various types of traffic may emit packets. Assume the universe
of rates is [0, MAX] where MAX is given by physical constraints.
Then max(x, 100Mbps) says the rate of x traffic must be in the
interval [0, 100Mbps), whereas min(x, 100Mbps) says the rate
of x traffic must be in [100Mbps, MAX], assuming the source
is attempting to transmit that much data. Negation inverts the
set of rates allowed, so that !'max(x,100Mbps) is in fact min(x,
100Mbps). Bandwidth constraints differ from packet-processing
functions in one important aspect—they represent an explicit
allocation of global network resources—so they require extra
care during compilation.

Syntactic Sugar: Merlin supports several forms of syn-
tactic sugar that simplify the expression of complex policies.
For example, the following policy,

srcs := {192.168.1.1}

dsts := {192.168.1.2}

foreach (s,d) in cross(srcs,dsts):
ip.src = s and ip.dst = d and tcp.dport = 80 —>
L% dpi .* nat .=

is equivalent to statement z from our earlier example. The
sets srcs and dsts refer to singleton sets of hosts. The cross
operator takes the cross product of these sets. The foreach
statement iterates over the resulting set, creating a predicate
from the source s, destination d, and term tcp.dport = 80.

Summary: Merlin enables direct expression of high-level
network policies. Programmers write policies as though they
were centralized programs executing on a single device.
In reality, a variety of distributed devices collaborate to
collectively enforce the policy. The next few sections present
Merlin’s policy distribution and enforcement mechanisms in
detail.

III. COMPILER

The Merlin compiler performs three key tasks: (i) it trans-
lates global policies into locally-enforceable policies; (ii) it
allocates bandwidth and selects forwarding paths and place-
ment of network functions; and (iii) it generates low-level
configuration instructions for devices and end hosts. To do this,
the compiler takes as inputs the policy, physical topology, and
a mapping from network functions to possible placements, and
builds a logical topology that combines the physical topology
with the constraints encoded in the policy. It then analyzes this

logical topology to allocate resources and generate low-level
configurations for switches, middleboxes, and end hosts.

A. Localization

Presburger arithmetic formulas are an expressive way to
declare global bandwidth constraints, but implementing them
leads to several challenges: aggregate guarantees can be
enforced using shared quality-of-service queues on switches,
but aggregate limits are more difficult, since they require dis-
tributed state in general. To solve this problem, Merlin adopts a
pragmatic approach. The compiler first rewrites the formula so
that bandwidth constraints apply to packets at a single location.
Given a formula with one term over n identifiers, the compiler
produces a new formula of n local terms that collectively
imply the original. By default, the compiler divides bandwidth
equally among the local terms, although other schemes are
permissible. For example, the formula in our running example
could be localized to:

max(x,25MB/s) and max(y,25MB/s) and min(z,100MB/s)

Rewriting policies in this way involves a tradeoff: local-
ized enforcement increases scalability, but risks underutilizing
resources. In Section IV, we describe how Merlin navigates
this tradeoff via a run-time mechanism, called negotiators, that
can dynamically adjust allocations.

B. Provisioning for Guaranteed Rates

Another challenging aspect of compilation is provisioning
bandwidth. To do this, the Merlin compiler encodes the input
policy and the topology into a constraint problem whose
solution can be used to determine device configurations.

Logical Topology: Each policy statement contains a reg-
ular expression, which constrains the set of legal forward-
ing paths. To facilitate computing paths that satisfy these
constraints, the compiler constructs an internal representation
with a directed graph G in which each path corresponds to
a physical path that respects the constraints expressed in a
given statement. The overall graph G is a union of disjoint
components G;, one for each policy statement.

Note that the regular expression a; in statement i is over
the set of locations and packet-processing functions. The first
step in the construction of G, is to convert a; into a regular
expression a; over the set of locations only. This is done
by a simple substitution: for every occurrence of a packet
processor, we substitute the union of all locations associated
with that function. (Recall that the compiler takes an auxiliary
input specifying this mapping from functions to locations.) For
example, if h1, h2, and ml are the three locations capable of
running deep packet inspection, then the regular expression

+ dpi .+ would be transformed into .+ (h1|h2|ml) .+. The
next step is to transform the regular expression a; into a
deterministic finite automaton (DFA) M that accepts the set of
strings in the regular language given by a;. This transformation
is performed using the subset construction [15].

Letting L denote the set of locations in the physical network
and Q; denote the state set of M, the vertex set of G; is the
Cartesian product L x Q; together with two special vertices

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4
Physical topology ; LP Graph
with vertices V with states Q; G;
Fig. 2. Example logical topology and a possible solution.

{si,t;} that serve as a universal source and sink for paths
representing statement 4 respectively. The graph G; has an edge
from (u,q) to (v,q’) if and only if: (i) u = v or (u,v) is an
edge of the physical network, and (ii) (¢, ¢’) is a valid state
transition of M; when processing v. Likewise, there is an
edge from s; to (v,q’) if and only if (¢°,¢’) is a valid state
transition of M; when processing v, where ¢" denotes the start
state of M,. Finally, there is an edge from (u, q) to t; if and
only if ¢ is an accepting state of M. Paths in G; correspond to
paths in the physical network that satisfy the path constraints
of statement ¢, as captured in the following lemma.

Lemma 1: A sequence of locations ui,us,...,u sat-
isfies the constraint described by regular expression
a; if and only if G; contains a path of the form

siy (U1, qu), (u2,q2), - .., (uk, qi), ti for some state sequence
qi,--.,qk. A path in G; of this form will henceforth be called
a lifting of w1, us, ..., ug.

Proof: The construction of G; ensures that

Siy (ula q1)7 (u25 q2)7 ey (uk’a qk’)7t’i

is a path in the graph if and only if (i) the sequence u, .. ., ug
represents a path in the physical network (possibly with ver-
tices of the path repeated more than once consecutively in the
sequence), and (ii) the automaton M, has an accepting com-
putation path for w1, . . ., uy with state sequence ¢°, ¢', ..., ¢".
The lemma follows from the fact that a string belongs to
the regular language defined by a; if and only if M; has
a computation path that accepts that string. O

Figure 2 illustrates the construction of the graph G; for a
statement with path expression hl .+ dpi .* .+ h2, on a
small example network. We assume that deep packet inspec-
tion (dpi) can be performed at hi, h2, or m1, whereas network
address translation (nat) can only be performed at m1. Paths
matching the regular expression can be “lifted” to paths in G;.
The thick, red path in the figure illustrates one such lifting.
Notice that the physical network also contains other paths
such as hi, s1, h2 that do not match the regular expression.
These paths do not lift to any path in G;. For instance,
focusing attention on the rows of nodes corresponding to states
¢® and ¢> of the NFA, note that all edges between these rows
lead into node (m1,¢>). Hence, any path that avoids ml in

nat

IEEE/ACM TRANSACTIONS ON NETWORKING

the physical network cannot be lifted to an s;—¢; path in the
graph G;.

Path Selection: Next, the compiler determines a satisfy-
ing assignment of paths that respect the bandwidth constraints
encoded in the policy. The problem bears a similarity to
the well-known multi-commodity flow problem [16], with
two additional types of constraints: (i) integrality constraints
demand that only one path may be selected for each statement,
and (ii) path constraints are specified by regular expres-
sions, as discussed above. To incorporate path constraints,
we formulate the problem in the graph G = | J; G; described
above, rather than in the physical network itself. Incorporating
integrality constraints renders the problem NP-complete in
the worst case, but several practical approaches have been
developed, ranging from approximation algorithms [17]-[21],
to specialized algorithms for expanders [22]-[24] and planar
graphs [25], to the use of mixed-integer programming [26].
We adopt the latter technique in our implementation.

Our mixed-integer program (MIP) has a {0, 1}-valued deci-
sion variable x. for each edge e of G; selecting a route for
each statement corresponds to selecting a path from s; to t;
for each ¢ and setting z. = 1 on the edges of those paths,
z. = 0 on all other edges of G. These variables are required
to satisfy the flow conservation equations

1 if v=s;
Yo e g Z Te — Z Te=1g —1 ifo=¢t (hH
e€dt(v) e€d~ (v) 0 otherwise

where 67 (v), 67 (v) denote the sets of edges exiting and
entering v, respectively. For bookkeeping purposes the MIP
also has real-valued variables r,, for each physical network
link (u,v), representing what fraction of the link’s capacity is
reserved for statements whose assigned path traverses (u,v).
Finally, there are variables 7,,x and R,,,x representing the
maximum fraction of any link’s capacity devoted to reserved
bandwidth, and the maximum net amount of reserved band-
width on any link, respectively. The equations and inequalities
pertaining to these additional variables can be written as
follows. For any statement 4, let 7%, ~denote the minimum
amount of bandwidth guaranteed in the rate clause of statement
i. (r’;, = 0if the statement contains no bandwidth guarantee.)
For any physical link (u,v), let ¢, denote its capacity
and let E;(u,v) denote the set of all edges of the form

((u,9), (v,4)) or ((v,9), (u,¢")) in Gi.

= Z Z rfninme (2)

V(’U,, U) Tuv Cyv

i e€ By (u,v)
Y(u,) max > Tuw 3)
V(u,v) Rmax > TuvCuv “)

Tmax < 1 (5)

Constraint 2 defines 7., to be the fraction of capacity on link
(u,v) reserved for bandwidth guarantees. Constraints 3 and 4
ensure that rp,,x (respectively, Ry.x) is at least the maxi-
mum fraction of capacity reserved on any link (respectively,
the maximum net amount of bandwidth reserved on any link).
Constraint 5 ensures that the path assignment will not exceed

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SOULE et al.: MERLIN: LANGUAGE FOR MANAGING NETWORK RESOURCES

Fig. 3. Path selection heuristics. The edge labels in the graphs indicate
the remaining capacities after path selection. (a) Shortest-Path (b) Min-Max
Ratio (c) Min-Max Reserved.

the capacity of any link, by asserting that the fraction of
reserved capacity does not exceed 1.

Path Selection Heuristics: In general, there may be
multiple assignments that satisfy the path and bandwidth
constraints. To indicate the preferred assignment, programmers
can invoke Merlin with one of three optimization criteria:

o Weighted shortest path: minimizes the total number of
hops in selected paths weighted by bandwidth guaran-
tees: min Y, >0, 2, D cepy (uw) 7t . . This criterion is
appropriate when the goal is to minimize latency.

Min-max

e ratio: minimizes the maximum fraction of capacity
reserved on any link (i.e., 7,ax). This criterion is appro-
priate when the goal is to balance load across links.

Min-max

e reserved: minimizes the maximum amount of bandwidth
reserved on any link (i.e., Ryax). This criterion is appro-
priate when the goal is to guard against failures, since
it limits the maximum amount of traffic that may be
disrupted by a single link failure.

The differences between these heuristics are shown in Figure 3
which depicts a network with hosts h1 and h2 connected by
two disjoint paths. The left path has three edges of capacity
400MB/s while the right path has two edges of capacity
100MB/s. Suppose that two statements each request 50MB/s
of guaranteed bandwidth. The MIP solver will either select
two-hop paths (weighted shortest path), reserve no more than
25% of capacity on any link (min-max ratio), or reserve no
more than 50MB/s on any link (min-max reserved).

The Merlin compiler computes solutions that use a single
path for each traffic class. While there exist approaches to
multi-commodity flow that take advantage of multiple paths,
we leave this extension as a topic for future work.

C. Provisioning for Best-Effort Rates

For policies that require only best-effort rates, Merlin does
not need to solve a constraint problem. Instead, the compiler
only needs to compute sink-trees that obey the path constraints
expressed in the policy. To do this, Merlin computes the
cross product of the regular expression DFA and the network
topology representation, as just described, and then performs
a breadth-first search over the resulting graph. To further
optimize performance, the compiler uses a topology that

includes only switches, and computes a sink tree for each
egress switch. The compiler adds instructions to forward traffic
from the egress switches to the hosts during code generation.
This allows the BFS to be computed in O(|V||E|), where |V|
is the number of switches rather than the number of hosts.

D. Code Generation

Merlin enables programmers to write high-level policies
without worrying about how those policies are implemented.
The Merlin compiler uses program partitioning to transform
the policy into separate programs, instructions, and configura-
tions that are deployed on distributed devices.

o Switches. Merlin generates configurations for network
switches using the OpenFlow [27] libraries provided by
the Frenetic SDN Controller [28]. To enforce bandwidth
guarantees, Merlin uses the min-rate queues defined in
version 1.0 of the OpenFlow specification, as well as
device-specific port queue configuration commands.

o Middleboxes. For functionality such as deep packet
inspection, load balancing, and intrusion detection, Mer-
lin generates configuration scripts for Click [29] that
define the sequence of packet-processing functions to
apply. Other approaches are possible—e.g., Merlin could
generate Puppet [30] scripts to provision and manage
virtual machines instead.

o End hosts. Traffic filtering and rate limiting are imple-
mented using standard Linux utilities (iptables and tc).
Tag-Based Routing: Because Merlin controls forwarding

paths but also supports packet-processing functions that may
modify headers (such as NAT boxes), the compiler must use
a forwarding mechanism that is robust to changes in packet
headers. Our implementation uses VLAN tags to encode paths
to destination switches, one tag per sink tree. All packets
destined for a given destination are tagged when they enter
the network. Subsequent switches simply examine the tag
to determine the next hop. At the egress switch, the tag is
stripped off and replaced with a unique identifier for the
host (e.g., the MAC address). Similar approaches are used
in other systems for combining programmable switches and
middleboxes such as FlowTags [31].

To sum up, the Merlin compiler is designed with flexibility
in mind and can be easily extended with additional backends
that capitalize on the capabilities of the various devices avail-
able in the network. Although the expressiveness of policies
is bounded by the capabilities of the devices, Merlin provides
a unified interface for programming them.

IV. DYNAMIC ADAPTATION

The Merlin compiler described in the preceding section
translates policies into static configurations. However, these
static configurations may underutilize resources, depending on
how demands for traffic evolve over time. Moreover, in a
shared environment, tenants may wish to customize global
policies to suit their needs—e.g., adding security constraints.

To support dynamic modification of policies, Merlin uses
small run-time components called negotiators, which trans-
form and verify policies. Negotiators allow policy management

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6
y =0.5GB
z=1.5GB
Negotiator
y =0.5GB Renegotiation 7= 15GB
/ :
Negotiator Negotiator
(@)
y =0.5GB y =0.5GB
Z=1.5GB ‘/_\ Z=1.5GB
Negotiator % Negotiator
(b)
Fig. 4. Broker-based and peer-to-peer re-negotiation. (a) Broker-based.

(b) Peer-to-peer.

to be delegated to tenants and provide mechanisms for veri-
fying that choices made by tenants do not violate the original
policy. Negotiators depend critically on Merlin’s language-
based approach—the abstractions used to express policies (i.e.,
predicates, regular expressions, and bandwidth constraints),
also make it easy to support verifiable policy transformations.

Negotiators are distributed throughout the network in a tree,
forming a hierarchical overlay over network elements. Each
negotiator is responsible for the network elements in the sub-
tree for which it is the root. Parent negotiators impose policies
on their children. Children may refine their own policies,
as long as the refinement implies the parent policy. Likewise,
siblings may renegotiate resource assignments cooperatively,
as long as they do not violate parent policies.

Negotiators communicate amongst themselves to dynam-
ically adjust bandwidth allocations to fit particular deploy-
ments and traffic demands. Once agreement has been reached,
the allocations can be adjusted in two ways: through a central
negotiator that acts as a broker (Figure 4a) or in a peer-to-peer
fashion between participant negotiators (Figure 4b).

In either case, the new allocation must conform to the
parent policy. A parent policy may apply to many hosts,
not just the participants in the renegotiation. At a mini-
mum, renegotiation requires the form of the parent constraint,
the allocations of the participants, and mappings of variables
to participant hosts. Therefore, knowledge revealed during
negotiation is limited to information about the participants and
the global policy. Choosing between the broker and peer-to-
peer strategies involves a tradeoff between performance and
privacy. The broker approach is privacy-preserving, but adds
the overhead of working through the broker. The peer-to-
peer approach avoids the broker overhead at the expense of
revealing information to end-hosts.

Merlin does not specify protocols for reaching agreement
on new allocations as the details of such a protocol depend
on a variety of factors, such as the trust relationships between
tenants, and the tolerance for time spent reaching a consensus.
These are exogenous concerns better handled outside of the
core system. Our evaluation uses a peer-to-peer negotiator, and

IEEE/ACM TRANSACTIONS ON NETWORKING

a simple protocol that assumes cooperative peers requesting
reallocations in the collective best-interest.

A. Transformations

With negotiators, tenants can transform global network poli-
cies by refining the delegated policies to suit their demands.
Tenants may modify policies in three ways: (i) the packet
set specified by a statement’s predicate may be further par-
titioned; (ii) forwarding paths may be further constrained; and
(iii) bandwidth allocations may be revised.

Partitioning Packet Sets: Merlin policies classify packets
into sets using predicates that combine matches on header
fields using logical operators. These sets can be refined by
introducing additional constraints to the original predicate. For
example, a predicate for matching all TCP traffic:

ip.proto = tcp
can be partitioned into predicates that distinguish HTTP traffic:

ip.proto = tcp and tcp.dport = 80
ip.proto = tcp and tcp.dport != 80

The partitioning must be total—all packets matched by the
original predicate must be matched by some new predicate.

Constraining Paths: Merlin programmers declare path
constraints using regular expressions that match sequences of
network locations or packet processing functions. Tenants can
refine a policy by adding addition constraints to the regular
expression. For example, an expression that says all packets
must go through a traffic logger (log) function,

.+ log .
can be further constrained by adding a DPI function:

.+ log .» dpi .=*

A transformation that changes regular expressions is valid if
the set of paths denoted by the new expression is a subset of
the paths denoted by the original.

Re-Allocating Bandwidth: Merlin’s limits (max) and guar-
antees (min) constrain allocations of network bandwidth. After
a policy has been refined, these constraints can be redistributed
to improve utilization. A transformation that changes band-
width constraints is valid if the sum of the new allocations
does not exceed the original allocation.

Example: As an example that illustrates the use of all
three transformations, consider the following policy, which
caps all traffic between two hosts at 700MB/s:

[x : (ip.src = 192.168.1.1 and

ip.dst = 192.168.1.2) -> .x],
max(x, 700MB/s)

This policy could be modified, as shown below. To conserve
space, we have replaced the details of the policy that have not
changed with an ellipsis (.. .).

[x : (... tcp.dport = 80) -> .* log .+ ;
y : (... tecp.dport = 22) -> .% ;
z : (... !(tcp.dport=22|tcp.dport=80)) -> .* dpi .*],

max(x, 500MB/s)
and max(y, 100MB/s)
and max(z, 100MB/s)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SOULE et al.: MERLIN: LANGUAGE FOR MANAGING NETWORK RESOURCES

It gives 500MB/s to HTTP traffic, which must flow through
a log box that monitors requests; it gives 100MB/s to SSH
traffic, and it gives 100MB/s to the remaining traffic, which
must flow through a dpi box.

B. Verification

In general, allowing tenants to make arbitrary modifications
to policies would be unsafe. For example, a tenant could lift
restrictions on forwarding paths, eliminate transformations,
or allocate more bandwidth to their own traffic—all violations
of the global policy set down by the administrator. Fortunately,
Merlin negotiators can leverage the policy language represen-
tation to check policy inclusion, which can be used to establish
the correctness of policy transformations implemented by
untrusted tenants.

Intuitively, a valid refinement of a policy is one that makes
it only more restrictive. To verify that a policy modified by a
tenant is a valid refinement of the original, the negotiator has
to check two conditions for every statement in the original
policy: (i) the set of paths allowed for matching packets in the
refined policy is included in the set of paths in the original,
and (ii) the bandwidth constraints in the refined policy imply
the bandwidth constraints in the original. These conditions
can be decided using an algorithm that performs a pair-wise
comparison of all statements in the original and modified poli-
cies, (i) checking for language inclusion between the regular
expressions in statements with overlapping predicates [32],
and (ii) checking that the sum of the bandwidth constraints
in all overlapping predicates implies the original constraint.

C. Overhead

Bandwidth re-allocation does not require recompilation of
the global policy, and can thus happen quite rapidly. However,
changes in path constraints require global recompilation and
updating forwarding rules on the switches, so they incur a
greater overhead. We believe changes to paths are likely to
occur less frequently than changes to bandwidth allocations.

V. EXAMPLES

To illustrate the expressiveness of the Merlin language,
we present several examples inspired by realistic scenarios.
MapReduce Guarantees: MapReduce [33] uses a many-
to-many communication pattern during its shuffle phase that
results in heavy network load. Consequently, MapReduce
is sensitive to background traffic in data centers, especially
with protocols such as UDP that lack congestion control
[34], [35]. Merlin can guarantee a minimum quality of service
for MapReduce traffic:

[x : (ip.src = 192.168.1.1/16 and
ip.dst = 192.168.1.1/16 and
ip.proto = 0x06 and
tcp.dport = 50060) ->

min(x,100MB/s)

1,

IP Multicast Control: Monitoring applications often rely
on IP multicast to transmit updates. But switches can only store
a limited number of multicast addresses, and must often resort
to flooding multicast packets. Instead, the administrator could

maintain multicast groups—sets of multicast addresses with
common subscribers—and compress each group to a single
address [36]. Merlin can slot multicast group traffic through
such a group compression function and enforce a rate limit:

[x : (ip.dst = 224.0.0.1 or
ip.dst = 224.0.0.2)
-> groupcompress .x],
max(x, 10GB/s)

Isolation: In some industries, regulations require corpo-
rations to keep different parts of their businesses separate. For
example, the Sarbanes-Oxley Act requires the investment side
of banks to be kept completely separate from the brokerage
side of the company. Regulations in healthcare such as HIPAA
are similar. Hence, corporate networks might need to ensure
that traffic from different portions of the network never tra-
verse the same middlebox.

[x : (ip.src = 192.168.1.1/8)

-=> xml .x
y : (ip.src != 192.168.1.1/8)
=> 1.+ ml .%);]

Defense in Depth: A common security practice, known as
defense in depth, constructs trustworthy systems by layering
less trustworthy components. The following policy captures
this approach by routing all traffic through two diverse firewall
implementations, without enforcing a particular ordering:

[x : true
> (.

.+ fire2
.+ firel

firel
fire2

*
*

I

)]

In summary, Merlin allows administrators to specify a
diverse set of policies that can enforce bandwidth caps, provide
bandwidth guarantees, indicate packet transformations, and
dictate forwarding paths.

VI. IMPLEMENTATION

We have implemented a full working prototype of the
Merlin system in OCaml and C. Our implementation uses
the Gurobi Optimizer [37] to solve constraints, the Frenetic
SDN Controller [28] to install forwarding rules on OpenFlow
switches, the Click router [29] to manage software middle-
boxes, and the ipfilters and tc utilities on Linux end hosts.
Note that the design of Merlin does not depend on these
specific systems. Our implementation provides clean interfaces
for incorporating different backends, allowing for others to
instantiate our design with alternative systems.

Our implementation of Merlin negotiator and verification
mechanisms leverages standard algorithms for transforming
and analyzing predicates and regular expressions. To delegate a
policy, Merlin intersects the predicates and regular expressions
in each statement with those in the original policy to project
out the policy for the sub-network. To verify implications
between policies, Merlin uses the Z3 SMT solver [38] to check
predicate disjointness, and the DPRLE library [39] to check
inclusions between regular expressions.

VII. EVALUATION

To evaluate Merlin, we investigated three main issues: (i) the
expressiveness of the Merlin policy language, (ii) the ability

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

of Merlin to improve end-to-end performance for applications,
and (iii) the scalability of the compiler and negotiator com-
ponents with respect to network and policy size. We used
two testbeds in our evaluation. Most experiments were run
on a cluster of Dell r720 PowerEdge servers with two 8-core
2.7GHz Intel Xeon processors, 32GB RAM, and four 1GB
NICs. The Ring Paxos experiment (§VII-B) was conducted
on a cluster of eight HP SE1102 servers equipped with two
quad-core Intel Xeon L5420 processors running at 2.5 GHz,
with 8 GB of RAM and two 1GB NICs. Both clusters used
a Pica8 Pronto 3290 switch to connect the machines. To test
the scalability we ran the compiler and negotiator frameworks
on various topologies and policies.

Overall, our experiments show that Merlin can effectively
provision and configure real-world datacenter and enterprise
networks, that it can be used to obtain better performance for
big-data processing applications and replication systems, and
that it enables succinctly expressing rich network policies.

A. Expressiveness

To explore the expressiveness of the Merlin policy lan-
guages, we built several network policies for the 16-switch
Stanford campus backbone topology [40]. We added 24 hosts
to each of the 12 edge switches in the topology and identified
each pair-wise exchange of traffic between hosts as a separate
traffic class. Hence, there are (24 % 12)? — (24 % 12) = 82,656
total traffic classes. We then implemented a series of policies
in Merlin, and compared the sizes of the Merlin source policies
and the outputs generated by the compiler. This comparison
measures the degree to which Merlin is able to abstract away
from hardware-level details and provide effective constructs
for managing a network.

The Merlin policies we implemented are as follows:

1) Baseline. This policy creates pair-wise forwarding rules
for all hosts in the network. The policy is restricted
to only forwarding, and does not use network func-
tions or specify bandwidth constraints. It therefore
provides a baseline measurement of the number of
low-level instructions that would be needed in almost
any non-trivial application. The Merlin policy is only 6
lines long and compiles to 145 OpenFlow rules.

2) Bandwidth. This policy augments the basic connectivity
by providing 10% of traffic classes a bandwidth guar-
antee of 1Mbps and a cap of 1Gbps. Such a guarantee
could be useful, for example, to prioritize emergency
messages sent to students. This policy required 11 lines
of Merlin code, but generates over 1600 OpenFlow rules,
90 TC rules and 248 queue configuration commands.
The number of OpenFlow rules increased dramatically
due to the presence of the bandwidth guarantees which
required provisioning separate forwarding paths for a
large collection of traffic classes.

3) Firewall. This policy assumes the presence of a middle-
box that filters incoming web traffic. The baseline policy
is altered to forward all packets matching a particular
pattern (e.g., tcp.dport = 80) through the middlebox.
This policy requires 23 lines of Merlin code, but gener-
ates over 500 OpenFlow rules.

IEEE/ACM TRANSACTIONS ON NETWORKING

3500

Queues ezza
tc

EXXXA
3000 OpenFlow ——

2500

2000

1500

Number of Instruction

1000

500

N N — [

Baseline Bandwidth Firewall Monitoring Combination
6 11 23

11 23
Merlinloc Merlinloc Merlinloc Merlin loc Merlin loc

Fig. 5. Merlin expressiveness with policies for the Stanford campus topology.

4) Monitoring. This policy attaches middleboxes to two
switches and partitions the hosts into two sets of roughly
equal size. Hosts connected to switches in the same
set may send traffic to each other directly, but traffic
flowing between the sets must pass through a middlebox.
This policy is useful for filtering traffic from untrusted
sources, such as student dorms. This policy required 11
lines of Merlin code but generates 300 OpenFlow rules,
roughly double the baseline.

5) Combination. This policy augments the baseline with a
filter for web traffic, bandwidth guarantees for certain
traffic classes, and an monitoring policy for certain
hosts. This policy requires 23 lines of Merlin code,
but generates over 3000 low-level instructions, includ-
ing OpenFlow rules, TC rules, and queue configuration
commands.

The results of this experiment are depicted in Figure 5.
Overall, using Merlin significantly reduces the effort, in terms
of lines of code, required to provision and configure network
devices for a variety of real-world management tasks.

B. Application Performance

Our second set of experiments explore Merlin’s ability to
express policies that are beneficial for real-world applications.
More specifically, they show that bandwidth provisioning and
function placement improve the performance of data center
applications, and also provide a proof-of-concept that Merlin
can be used to effectively manage data center traffic.

Hadoop: Hadoop is a popular open-source MapRe-
duce [33] implementation, and is widely-used for data ana-
Iytics. A Hadoop computation proceeds in three stages: the
system (i) applies a map operator to each data item to produce
a large set of key-value pairs; (ii) shuffles all data with a given
key to a single node; and (iii) applies the reduce operator to
values with the same key. The many-to-many communication
pattern used in the shuffle phase often results in heavy network
load, making Hadoop jobs especially sensitive to background
traffic. In practice, this background traffic can come from a
variety of sources. For example, some applications, such as
system monitoring tools [41], [42], network overlay manage-
ment [43], and even distributed storage systems [41], [44],

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SOULE et al.: MERLIN: LANGUAGE FOR MANAGING NETWORK RESOURCES

use UDP-based gossip protocols to update state. A sensible
network policy would be to provide guaranteed bandwidth to
Hadoop and best-effort service to UDP traffic.

We implemented this policy in Merlin using just three
statements. To show its impact, we ran a Hadoop job that
sorts 10GB of data from a corpus of open source texts (e.g.,
Shakespeare’s plays, etc.), and measured the time to complete
it on a cluster with four servers. The cluster was configures so
that all servers could act as a mapper or reducer. We ran the
experiment using three different configurations:

1) Baseline. Hadoop had exclusive access to the network.

2) Interference. We simulated background traffic by using
the iperf tool to inject UDP packets.

3) Guarantees. We again injected background traffic, but
guaranteed 90 percent of the capacity for Hadoop.

With exclusive network access, the Hadoop job finished in
466 seconds. With background traffic causing network con-
gestion, the job finished in 558 seconds, a roughly 20% slow
down. With bandwidth guarantees, the job finished in 500 sec-
onds, corresponding to the 90% allocation of bandwidth.

Ring-Paxos: State-machine replication (SMR) is a funda-
mental approach to designing fault-tolerant services [45], [46]
that is used at the core of many current systems (e.g., Google’s
Chubby [47], Scatter [48], Spanner [49]). State machine
replication provides clients with the abstraction of a highly
available service by replicating the servers and regulating how
commands are propagated to and executed by replicas: (i) each
non-faulty replica must receive the commands in the same
order; and (ii) the execution must be deterministic.

Because ordering commands in a distributed setting is
non-trivial, the performance of a replicated service is often
determined by the number of commands that can be ordered
per time unit. To achieve high performance, state can be
partitioned and each partition replicated individually (e.g.,
by separating data from meta-data), but the partitions will then
compete for shared resources.

We assessed the performance of a key-value store ser-
vice replicated with state-machine replication. Commands
are ordered using an open-source implementation of Ring
Paxos [50], a highly efficient implementation of the Paxos
protocol [51]. We deployed two instances of the service, each
one using four processes. One process in each service is
co-located on the same machine and all other processes run on
different machines. Clients are distributed across six different
machines and submit their requests to one of the services and
receive responses from the replicas.

Figure 6 (a) depicts the throughput of the two services; the
aggregate throughput shows the accumulated performance of
the two services. Since both services compete for resources on
the common machine, each service has a similar share of the
network, the bottlenecked resource at the common machine.
In Figure 6 (b), we specified a guarantee of 60 percent of
the capacity for the second service. Note that this guarantee
does not come at the expense of utilization. If it stops sending
traffic, the other service is free to use the available bandwidth.

Deep Packet Inspection: Merlin policies can also improve
application performance through the careful placement of

1400 1400
Aggregate = Ring | <O Ring2 ¥,

1200 1200

Agiregte 1~ Ring 1O~ Ring2 ¥

1000 1000

800

600 vy¥

Throughput (Mbps)
Throughput (Mbps)

v
YYrvy
7y

2 BHHBOE
400 @_5:5"90”6@@ RAL 40 5505900090000
® »F

200 D/ 200

'

0 0 20 40 60 80 100 120 0 0 20 40 60 80 100 120
Number of clients Number of clients
(@) (b)
Fig. 6. Ring-Paxos (a) without and (b) with Merlin.
7 - ‘ :
Middlebox —«—

/&)\ 6 | End'HOSt P,]
£
2
G o 1
@
=
g a4t 1
>
2
g 37 1
s
[0 L 4
g 2
©
o
Q L |
z 1

0 L L L L L L L L

0 100 200 300 400 500 600 700 800
Throughput (Mbits/s)

Fig. 7. A Merlin policy inspired by ETTM [52] showing that a centralized
middlebox implementation of deep packet inspection has higher latency than
an end-host implementation.

network functions. To demonstrate how placement can impact
performance, we designed an experiment inspired by recent
work on moving middlebox functionality to end-hosts [52].
We measured traffic latency for a network under two possible
configurations: one in which all traffic is routed through a
Deep Packet Inspection (DPI) middlebox, and one in which
DPI functionality is implemented on end hosts. We imple-
mented the DPI functionality using Click [29].

The experiment network consisted of five machines con-
nected to a single switch. Two machines were used to generate
traffic for which we measured latency. Two machines were
used to generate background traffic. The final machine acted
as the DPI middlebox.

We measured the latency for sending traffic under
increasing network load. To place load on the network,
we used the two background traffic machines. The client
side forked m processes, each continually sending data to
the server. We increased the amount of traffic by increasing the
number of processes running concurrently. We computed the
traffic throughput on these machines, and increased the load
until we were unable to measure an increase in throughput.
Traffic was generated using the datacenter traffic distribution
identified by Greenberg er al. [53]. To measure latency,
we used a second pair of machines. The client side sent
1000-byte probes to the server, and the server sent them back.

For each step of increasing load, we took 1000 latency mea-
surements, and computed the 90th percentile. This eliminates
extreme outliers due to packet loss and retransmission. We ran
each experiment three times, and report the average results.

The results are shown in Figure 7. When the net-
work is lightly loaded, the performance of both systems

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

are comparable. This is as expected, since the computation
performed by end-hosts and the middlebox element are the
same. The extra overhead for the middlebox case, about
0.25ms, is due to the extra hops (to and from the middle-
box) that each packet needs to travel. When the network is
heavily loaded, at about 800 Mbits/second, the effects of the
middlebox bottleneck become manifest. The latency spikes
to over 6 milliseconds, and we see an increasing number of
packet drops and retransmissions. In contrast, the latency for
the end-host setup stays constant at around 0.26 milliseconds.
This is a 95% reduction in latency when the network is heavily
loaded.

The results are exactly as one would expect, since one
configuration suffers from a central bottleneck, while the other
network configuration distributes the computation. However,
in this case, using the shortest-path heuristic, Merlin compute
an optimal placement for the network function.

Summary: Overall, these experiments show that the Mer-
lin language can concisely express real-world policies, and that
the Merlin system is able to generate code that achieves the
desired outcomes for applications on real hardware.

C. Compilation and Verification

The scalability of the Merlin compiler and verification
framework depends on both the size of the network topology
and the number of traffic classes. Our third set of experiments
evaluate the scalability of Merlin under a variety of scenarios.

Compiler: 'We measured the compilation time of the
Merlin compiler on three different sets of network topologies.

1) Topology Zoo. The Internet Topology Zoo [54] dataset
contains 262 topologies that represent a large diversity
of network structures. We treated each node in the
Topology Zoo graph as a switch, and attached one host
to each switch. The topologies have an average size
of 40 switches, with a standard deviation of 30 switches.
We measured the compilation time needed by Merlin
to determine pair-wise forwarding rules for all hosts in
each topology. In other words, the policy provides basic
connectivity for all hosts in the network. The results are
shown in Figure 8.

2) Balanced Trees. We used the NetworkX Python software
package [55] to generate balanced tree topologies. In a
balanced tree, each node has n children, except the
leaves. We treated internal node as switches, and leaf
nodes as hosts. We varied the depth of the tree from
2 to 3, and the fanout (i.e., number of children) over
a range of 2 to 24, to give us trees with varying
numbers of hosts and switches. We identified each
pair-wise exchange of traffic between hosts as a separate
traffic class. We measured the compilation time for two
different policies for an increasing number of traffic
classes. Figure 9 (a) shows the time to provide pair-wise
connectivity with no guarantees, and Figure 9 (b) shows
the time to provide connectivity when 5% of the traffic
classes receive bandwidth guarantees.

3) Fat Trees. Finally, we used the NetworkX package to
generate fat tree topologies [56]. A fat tree contains a

IEEE/ACM TRANSACTIONS ON NETWORKING

700 |

600 - o
€ s} o
% 400 - o©
é 300 -))
E o
F 200 [o

()
100 | o8
0 w

. . .
0 50 100 150 200
Switches

Fig. 8. Compilation times for Internet Topology Zoo.
2 1000
=z O
s 15 S 750
= =2
o o
a1 @ 500
2 2
o o
£ 05 £ 250
= =
0 0
1M 50M 100M 150M 200M 10K 50K 100K 150K 200K
Traffic Classes Traffic Classes
(a) (b)
Fig. 9. Compilation times for an increasing number of traffic classes in a

balanced tree topology for (a) all pairs connectivity, (b) 5% of the traffic with
guaranteed priority.

80 2500
= o
o 60 o 2000
=2 2
3 w0 S 1500
£ £ 1000
g 20 g
£ £ 500

0 0

1M 50M 100M 150M 200M 10K 50K 100K 150K 200K
Traffic Classes Traffic Classes
(a) (b)
Fig. 10. Compilation times for an increasing number of traffic classes in

a fat tree topology for (a) all pairs connectivity, (b) 5% of the traffic with
guaranteed priority.

set of pods. Each pod of size n has two layers of n/2
switches. To each switch in a lower layer, we attached
two hosts. Each pair-wise exchange of traffic between
hosts is a separate traffic class. We increased the pod size
n to create larger numbers of traffic classes. Figure 10
(a) shows the compilation time to provide pair-wise
connectivity with no guarantees, and Figure 10 (b)
shows the time to provide connectivity when 5% of the
traffic classes receive bandwidth guarantees. To provide
more detail for fat tree topologies, Figure 11 shows a
sample of topology sizes and solution times for various
traffic classes, along with a finer-grained accounting of
compiler time.

The results in Figure 8 show that for providing basic
connectivity, Merlin scales well on a diverse set of topologies.
The compiler finished in less than 50ms for the majority
of topologies, and less than 600ms for all but one of the
topologies. To improve the readability of the graph, we elided
the largest topology, which has 754 switches and took Merlin
4 seconds to compile. In practice, we expect that this task
would be computed offline.

Figures 9 and 10 show the impact of bandwidth guarantees
on compilation time. As expected, the guarantees add signif-
icant overhead. The worst case scenario that we measured,
shown in Figure 10 (b), was a network with 184,470 total
traffic classes, with 9, 224 of those classes receiving bandwidth
guarantees. Merlin took around 41 minutes to find a solution.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SOULE et al.: MERLIN: LANGUAGE FOR MANAGING NETWORK RESOURCES

11

Traffic Classes | Hosts | Switches | LP construction (ms) | LP solution (ms) | Best-Effort solution (ms)
870 30 45 25 22 33
8010 90 80 214 160 36
28730 170 125 364 252 106
39800 200 125 1465 1485 91
95790 310 180 13287 248779 222
136530 370 180 27646 1200912 215
159600 400 180 29701 1351865 212
229920 480 245 86678 10476008 451
Fig. 11. Number of traffic classes, topology sizes, and details of compilation time for fat tree topologies with 5% of the traffic classes with guaranteed
bandwidth.
21 4000 21
20 prs 3000 . 20 H *
) %}f{i € 000 S e
g . 2 . g oot
" et g = |
18 b 1000 o 18 41
17 [17
0 2000 4000 6000 8000 10000 0 200 400 600 800 1000 0 2000 4000 6000 8000 10000

Number of Statements

Number of Regular Expression Nodes

Number of Allocations

Fig. 12. Time taken to verify a delegated policy for an increasing number of delegated predicates, increasingly complex regular expressions, and an increasing

number of bandwidth allocations.

Merlin finds solutions for 100 traffic classes with guarantees
in a network with 125 switches in under 5 seconds.

Figure 11 shows more detail about where the compiler time
is spent. The LP construction column measures how long it
takes to create the LP problem. Our prototype implementation
writes the problem to a file on disk before invoking the solver
in a separate process. So, much of this time is attributed
to string allocations and file I/0. The LP solution column
measures how long it takes the solver to find a solution to the
LP problem. As expected, this is where most of the time is
spent as we increase the problem size. The Best-Effort solution
column measures how long it takes to find paths with best-
effort guarantees for the remaining traffic. The compiler spends
little time finding paths that do not provide guaranteed rates.

These experiments show that Merlin can provide connec-
tivity for large networks quickly and our mixed-integer pro-
gramming approach used for guaranteeing bandwidth scales
to large networks with reasonable overhead.

Verifying Negotiators: Delegated Merlin policies can
be modified by negotiators in three ways: by changing the
predicates, the regular expressions, or the bandwidth alloca-
tions. We ran three experiments to benchmark our negotiator
verification runtime for these cases. First, we increased the
number of additional predicates generated in the delegated
policy. Second, we increased the complexity of the regular
expressions in the delegated policy. The number of nodes
in the regular expression’s abstract syntax tree is used as a
measure of its complexity. Finally, we increased the number
of bandwidth allocations in the delegated policy. For all three
experiments, we measured the time needed for negotiators to
verify a delegated policy against the original policy. We report
the mean and standard deviation over ten runs.

The results, shown in Figure 12, demonstrate that policy
verification is extremely fast for increasing predicates and
allocations. Both scale linearly up to tens of thousands of
allocations and statements and complete in milliseconds. This
shows that Merlin negotiators can be used to rapidly adjust
to changing traffic loads. Verification of regular expressions

has higher overhead. It scales quadratically, and takes about
3.5 seconds for an expression with a thousand nodes in its
parse tree. However, since regular expressions denote paths
through the network, it is unlikely that we will encounter
regular expressions with thousands of nodes in realistic
deployments. Moreover, we expect path constraints to change
relatively infrequently compared to bandwidth constraints.

Dynamic Adaptation: Merlin negotiators support a wide
range of resource management schemes. We implemented
two common approaches: additive-increase, multiplicative
decrease (AIMD), and max-min fair-sharing (MMES). Both
implementations required two components: a negotiator which
ran on the same machine as the SDN controller, and end-host
software, which monitors per-host bandwidth usage, and sends
requests to the negotiator.

With AIMD, the end-host components send requests to the
negotiator to incrementally increase their bandwidth alloca-
tion. The negotiator maintains a mapping of hosts to their
current bandwidth limits. When the negotiator receives a new
request, it attempts to satisfy the demand. If, however, satisfy-
ing the demand violates the global policy, it then exponentially
reduces the allocation for the host. After computing the
new allocations, the negotiator generates the updated Merlin
policies, which are processed by the compiler to generate new
tc commands that are installed on the end-hosts.

With MMFS, the end-host components declare resource
requirements ahead of time by sending demands to the nego-
tiator. The negotiator maintains a mapping of hosts to their
demands. When the negotiator receives a new demand, it re-
allocates bandwidth for all hosts. It does this by attempting
to satisfy all demands starting with the smallest. When there
is not enough bandwidth available to satisfy any further
demands, the left-over bandwidth is distributed equally among
the remaining tenants. Once the new allocations are computed,
the negotiator generates a new policy that reflects those alloca-
tions. The new policy is processed by the compiler to generate
new queue configurations for switches, and tc commands
for end hosts. The queue configurations ensure that satisfied

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

600
550
500
450

Throughput (Mbits/s)

100

0 10 20 30 40 50 60 70

Fig. 13. (a) AIMD and (b) MMFS dynamic adaptation.

demands are respected, and the tc commands ensure that the
remaining traffic does not exceed the allocation specified by
the original policy.

Figure 13 (a) shows the bandwidth usage over time for
two hosts using the AIMD strategy. Figure 13 (b) shows
the bandwidth usage over time for four hosts using the
MMEFS negotiators. Host h1 communicates with h2, and h3
communicates with h4. Both expreiments were run on our
hardware testbed. Overall, negotiators allow the network to
quickly adapt to changing resource demands, while respecting
the global constraints imposed by the policy.

VIII. RELATED WORK

We first presented a preliminary design for Merlin in a
workshop paper [12], and then described the approach in more
detail, including an experimental evaluation, in a conference
paper [13]. This paper build on that prior work with an
expanded discussion of the optimization problem and nego-
tiator design, additional examples, and more evaluation.

A number of systems in recent years have investigated
mechanisms for providing bandwidth caps and guaran-
tees [35], [57]-[59], implementing traffic filters [60], [61],
or specifying forwarding policies at different points in the net-
work [1], [11], [62], [63]. Merlin builds on these approaches
by providing a unified interface and central point of control
for switches, middleboxes, and end hosts.

SIMPLE [8] is a framework for controlling middleboxes.
SIMPLE attempts to load balance the network with respect to
TCAM and CPU usage. Like Merlin, it solves an optimization
problem, but it does not specify the programming interface to
the framework, or how policies are represented and analyzed.

The APLOMB [64] system allows network operators to
specify middlebox processing services that should be applied
to classes of traffic. The actual processing of packets is handled
by virtual machines deployed in a cloud-based architecture.
Merlin is similar, in that policies allow users to specify packet-
processing functions. However, Merlin does not directly target
cloud-services. Moreover, Merlin allocates paths with respect
to bandwidth constraints, while APLOMB does not.

E2 [65] is a framework that implements common func-
tionality for packet-processing applications. Similar to Merlin,
it provides a declarative policy-language for traffic manage-
ment. E2 differs from Merlin, though, in that it is focused
on Network Function (NF) management. Users provide NF

IEEE/ACM TRANSACTIONS ON NETWORKING

500

"h1-h2

400

300 [

200 -

Throughput (Mbit/s)

100 |owmamrann s

descriptions, which allow the E2 software to handle tasks such
as placement, scaling, and service interconnection.

Many different programming languages have been pro-
posed in recent years including Frenetic [1], Pyretic [2], and
Maple [3]. These languages typically offer abstractions for
programming OpenFlow networks. However, these languages
are limited in that they do not allow programmers to specify
middlebox functionality, allocate bandwidth, or delegate poli-
cies. An exception is the PANE [66] system, which allows
end hosts to make explicit requests for network resources
such as bandwidth. Unlike Merlin, PANE does not provide
mechanisms for partitioning functionality and delegation is
supported at the level of individual flows, rather than entire
policies.

The Merlin compiler implements a form of program parti-
tioning. This idea has been previously explored in a variety
of other domains including secure web applications [67], and
distributed computing and storage [68].

IX. CONCLUSION

The success of programmable network platforms has
demonstrated the benefits of high-level abstractions for man-
aging networks. Merlin further raises the level of abstraction,
allowing administrators to specify the functionality of an entire
network, leaving the low-level configuration of individual
components to a compiler. At the same time, Merlin provides
mechanisms for tailoring policies to suit specific needs, while
ensuring that global constraints on forwarding paths and band-
width are correctly enforced. This approach both simplifies
network administration and lays a solid foundation for future
research projects on network programmability.

REFERENCES

[1]1 N. Foster et al., “Frenetic: A network programming language,” in Proc.
Int. Conf. Funct. Program., 2011, pp. 279-291, doi: 10.1145/2034773.
2034812.

[2] C Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Composing
software defined networks,” in Proc. Symp. Netw. Syst. Des. Implement.,
2013, pp. 1-13.

[3] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak, “Maple:
Simplifying SDN programming using algorithmic policies,” in Proc.
Conf. Appl., Technol., Archit., Protocols Comput. Commun., 2013,
pp. 87-98 , doi: 10.1145/2486001.2486030.

[4] C.J. Anderson et al., “NetKAT: Semantic foundations for networks,” in
Proc. Symp. Princ. Program. Languages, 2014, pp. 113-126, doi: 10.
1145/2578855.2535862.

http://dx.doi.org/10.1145/2486001.2486030
http://dx.doi.org/10.1145/2034773.2034812
http://dx.doi.org/10.1145/2034773.2034812
http://dx.doi.org/10.1145/2578855.2535862
http://dx.doi.org/10.1145/2578855.2535862

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SOULE et al.: MERLIN: LANGUAGE FOR MANAGING NETWORK RESOURCES

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

T. Nelson, M. Scheer, A. D. Ferguson, and S. Krishnamurthi, “Tierless
programming and reasoning for software-defined networks,” in Proc.
Symp. Netw. Syst. Des. Implement., 2014, pp. 1-14.

A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella, “Toward software-
defined middlebox networking,” in Proc. Workshop Hot Topics Netw.,
2012, pp. 7-12, doi: 10.1145/2390231.2390233.

D. A. Joseph, A. Tavakoli, and I. Stoica, “A policy-aware switching
layer for data centers,” in Proc. Conf. Appl., Technol., Archit., Protocols
Comput. Commun., 2008, pp. 51-62.

Z. A. Qazi et al., “SIMPLE-fying middlebox policy enforcement using
SDN,” in Proc. Conf. Appl., Technol., Archit., Protocols Comput. Com-
mun., 2013, pp. 27-38.

V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design
and implementation of a consolidated middlebox architecture,” in Proc.
Symp. Netw. Syst. Des. Implement., 2012, p. 24. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2228298.2228331

A. Lerner, (Feb. 2017), Intent-Based Networking, Gartner Blog Net-
work. [Online]. Available: https://blogs.gartner.com/andrew-lerner/2017/
02/07/intent-based-networking

C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler
and run-time system for network programming languages,” in Proc.
Symp. Princ. Program. Lang., 2012, pp. 217-230, doi: 10.1145/
2103656.2103685.

R. Soulé, S. Basu, R. Kleinberg, E. G. Sirer, and N. Foster, “Managing
the Network with Merlin,” in Proc. Workshop Hot Topics Netw., 2013,
Art. no. 24.

R. Soulé€ et al., “Merlin: A language for provisioning network resources,”
in Proc. Int. Conf. Emerg. Netw. Exp. Technol., Dec. 2014, pp. 213-226,
doi: 10.1145/2674005.2674989.

N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the
‘one big switch’ abstraction in software-defined networks,” in Proc.
Int. Conf. Emerg. Netw. Exp. Technol., 2013, pp. 13-24, doi:
10.1145/2535372.2535373.

A. V. Aho and J. D. Ullman, Theory of Parsing, Translation and
Compiling, vol. 1. Upper Saddle River, NJ, USA: Prentice-Hall, 1972.
R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: The-
ory, Algorithms, and Applications. Upper Saddle River, NJ, USA:
Prentice-Hall, 1993.

A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar, “Approximation
algorithms for the unsplittable flow problem,” in Proc. Int. Workshop
Approximation Algorithms Combinat. Optim., 2002, pp. 51-66.

J. Chuzhoy and S. Li, “A polylogarithmic approximation algorithm for
edge-disjoint paths with congestion 2,” in Proc. IEEE Symp. Found.
Comput. Sci., Oct. 2012, pp. 233-242.

Y. Dinitz, N. Garg, and M. X. Goemans, “On the single-source
unsplittable flow problem,” Combinatorica, vol. 19, no. 1, pp. 17-41,
Jan. 1999.

J. M. Kleinberg, “Single-source unsplittable flow,” in Proc. IEEE Symp.
Found. Comput. Sci., Oct. 1996, pp. 68-77.

S. G. Kolliopoulos and C. Stein, “Approximation algorithms for single-
source unsplittable flow,” SIAM J. Comput., vol. 31, no. 3, pp. 919-946,
2001.

A. Z. Broder, A. M. Frieze, and E. Upfal, “Static and dynamic path
selection on expander graphs: A random walk approach,” Random Struct.
Algorithms, vol. 14, no. 1, pp. 87-109, 1999.

A. M. Frieze, “Disjoint paths in expander graphs via random walks:
A short survey,” in Proc. Int. Workshop Randomization Approxi-
mation Techn. Comput. Sci., 1998, pp. 1-14. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646975.711409

J. Kleinberg and R. Rubinfeld, “Short paths in expander graphs,” in
Proc. IEEE Symp. Found. Comput. Sci., Oct. 1996, pp. 86-95.

H. Okamura, “Multicommodity flows in planar graphs,” J. Combinat.
Theory, Ser. B, vol. 31, no. 1, pp. 75-81, Aug. 1981.

C. Barnhart, C. A. Hane, and P. H. Vance, “Using branch-and-price-and-
cut to solve origin-destination integer multicommodity flow problems,”
Oper. Res., vol. 48, no. 2, pp. 318-326, 2000.

N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp- 69-74, Apr. 2008.

N. Foster, “The frenetic network controller,” in Proc. OCaml Users
Developers Workshop, 2013, pp. 1-2.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek,
“The click modular router,” ACM Trans. Comp. Syst., vol. 18, no. 3,
pp. 263-297, Aug. 2000.
Puppet. Accessed:
http://puppetlabs.com

Dec. 6, 2017. [Online]. Available:

(31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

(51]

[52]

(53]

[54]

[55]

13

S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic middlebox
actions using flowtags,” in Proc. Symp. Netw. Syst. Desing Imple-
ment., 2014, pp. 533-546. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2616448.2616497

J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages,
and Computation. Reading, MA, USA: Addison-Wesley, 1979.

J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proc. Symp. Oper. Syst. Desing Implement., 2004,
pp. 137-150. [Online]. Available: http://www.usenix.org/events/osdi04/
tech/full_papers/dean/dean.pdf

D. Bonfiglio, M. Mellia, M. Meo, and D. Rossi, “Detailed analysis of
skype traffic,” IEEE Trans. Multimedia, vol. 11, no. 1, pp. 117-127,
Jan. 2009.

V. Jeyakumar et al., “EyeQ: Practical network performance isolation
at the edge,” in Proc. Symp. Netw. Syst. Desing Implement., 2013,
pp. 297-312. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2482626.2482656

Y. Vigfusson et al., “Dr. Multicast: Rx for data center communica-
tion scalability,” in Proc. EuroSys, 2010, pp. 349-362, doi: 10.1145/
1755913.1755949.

Gurobi Optimization Inc., The Gurobi Optimizer.
Dec. 6, 2017. [Online]. Available: http://www.gurobi.com
L. D. Moura and N. Bjgrner, “Z3: An Efficient SMT Solver,” in Proc.
Int. Conf. Tools Algorithms Construct. Anal. Syst., 2008, pp. 337-340.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1792734.1792766
P. Hooimeijer. Dprle Decision Procedure Library. Accessed:
Dec. 6, 2017. [Online]. Available: http://www.cs.virginia.edu/~ph4u/
dprle/

Automatic Test Packet Generation. Accessed: Dec. 6, 2017. [Online].
Available: https://github.com/eastzone/atpg

R. Van Renesse, K. P. Birman, and W. Vogels, “Astrolabe: A robust and
scalable technology for distributed system monitoring, management, and
data mining,” ACM Trans. Comput. Syst., vol. 21, no. 2, pp. 164-206,
2003.

R. Subramaniyan, P. Raman, A. D. George, M. A. Radlinski, and
M. A. Radlinski, “GEMS: Gossip-enabled monitoring service for scal-
able heterogeneous distributed systems,” Cluster Comput., vol. 9, no. 1,
pp. 101-120, 2006.

M. Jelasity, A. Montresor, and O. Babaoglu, “T-Man: Gossip-based
fast overlay topology construction,” Comput. Netw., vol. 53, no. 13,
pp. 2321-2339, 2009.

G. DeCandia et al., “Dynamo: Amazon’s highly available key-value
store,” in Proc. Symp. Oper. Syst. Princ., 2007, pp. 205-220.

L. Lamport, “Time, clocks, and the ordering of events in a dis-
tributed system,” Commun. ACM, vol. 21, no. 7, pp. 558-565,
Jul. 1978.

F. B. Schneider, “Implementing fault-tolerant services using the
state machine approach: A tutorial,” Comput. Surv., vol. 22, no. 4,
pp. 299-319, 1990.

M. Burrows, “The Chubby lock service for loosely-coupled dis-
tributed systems,” in Proc. Symp. Oper. Syst. Desing Implement.,
2006, pp. 335-350. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1298455.1298487

L. Glendenning, I. Beschastnikh, A. Krishnamurthy, and T. Anderson,
“Scalable consistency in scatter,” in Proc. Symp. Oper. Syst. Princ., 2011,
pp. 15-28, doi: 10.1145/2043556.2043559.

J. C. Corbett et al., “Spanner: Google’s globally-distributed database,” in
Proc. Symp. Oper. Syst. Desing Implement., 2012, pp. 251-264. [Online].
Available: http://dl.acm.org/citation.cfm?id=2387880.2387905

P.J. Marandi, M. Primi, N. Schiper, and F. Pedone, “Ring Paxos: A high-
throughput atomic broadcast protocol,” in Proc. Int. Conf. Dependable
Syst. Netw., Jun./Jul. 2010, pp. 527-536.

L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, pp. 133-169, 1998, doi: 10.1145/279227.279229.

C. Dixon et al., “ETTM: A scalable fault tolerant network manager,” in
Proc. Symp. Netw. Syst. Desing Implement., 2011, pp. 85-98. [Online].
Available: http://dl.acm.org/citation.cfm?id=1972457.1972467

A. Greenberg et al., “VL2: A scalable and flexible data center network,”
in Proc. Conf. Appl., Technol., Archit., Protocols Comput. Commun.,
2009, pp. 51-62, doi: 10.1145/1592568.1592576.

The Internet Topology Zoo. Accessed: Dec. 6, 2017. [Online]. Available:
http://www.topology-zoo.org

NetworkX. NetworkX developers. Accessed: Dec. 6, 2017. [Online].
Available: https://networkx.github.io

Accessed:

http://dx.doi.org/10.1145/2390231.2390233
http://dx.doi.org/10.1145/2674005.2674989
http://dx.doi.org/10.1145/2535372.2535373
http://dx.doi.org/10.1145/2043556.2043559
http://dx.doi.org/10.1145/279227.279229
http://dx.doi.org/10.1145/1592568.1592576
http://dx.doi.org/10.1145/2103656.2103685
http://dx.doi.org/10.1145/2103656.2103685
http://dx.doi.org/10.1145/1755913.1755949
http://dx.doi.org/10.1145/1755913.1755949

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in Proc. Conf. Appl., Technol., Archit.,
Protocols Comput. Commun., 2008, pp. 63-74.

H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in Proc. Conf. Appl., Technol.,
Archit., Protocols Comput. Commun., 2011, pp. 242-253, doi: 10.1145/
2018436.2018465.

A. Shieh, S. Kandula, A. Greenberg, and C. Kim, “Seawall: Perfor-
mance isolation for cloud datacenter networks,” in Proc. Workshop Hot
Topics Cloud Comput., 2010, p. 1. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1863103.1863104

L. Popa et al., “FairCloud: Sharing the network in cloud computing,” in
Proc. Conf. Appl., Technol., Archit., Protocols Comput. Commun., 2012,
pp. 187-198, doi: 10.1145/2342356.2342396.

S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M. Smith,
“Implementing a distributed firewall,” in Proc. Conf. Comput. Commun.
Secur., 2000, pp. 190-199, doi: 10.1145/352600.353052.

M. Roesch, “Snort—Lightweight intrusion detection for networks,” in
Proc. Conf. Syst. Admin., 1999, pp. 229-238.

P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica, “Pathlet routing,”
SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, pp. 111-122, 2009,
doi: 10.1145/1594977.1592583.

T. Hinrichs, N. Gude, M. Casado, J. Mitchell, and S. Shenker, “Practical
declarative network management,” in Proc. Workshop Res. Enterprise
Netw., 2009, pp. 1-10.

J. Sherry et al., “Making middleboxes someone else’s problem: net-
work processing as a cloud service,” in Proc. Conf. Appl., Tech-
nol., Archit., Protocols Comput. Commun., 2012, pp. 13-24, doi:
10.1145/2377677.2377680.

S. Palkar et al., “E2: A framework for NFV applications,” in Proc. Symp.
Oper. Syst. Princ., 2015, pp. 121-136, doi: 10.1145/2815400.2815423.
A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,
“Participatory networking: An API for application control of SDNs,” in
Proc. Conf. Appl., Technol., Archit., Protocols Comput. Commun., 2013,
pp- 327-338.

S. Chong et al, “Secure Web Applications via Automatic Par-
titioning,” in Proc. Symp. Oper. Syst. Princ., 2007, pp. 31-44,
doi: 10.1145/1323293.1294265.

J. Liu et al., “Fabric: A platform for secure distributed computation and
storage,” in Proc. ACM SIGOPS Eur. Workshop, 2009, pp. 321-334,
doi: 10.1145/1629575.1629606.

Robert Soulé received the B.A. degree from Brown
University, Providence, RI, USA, in 1999, and the
Ph.D. degree from New York University, New York,
NY, USA, in 2012. He is currently an Assistant
Professor at the Universita della Svizzera italiana
and a Research Scientist at Barefoot Networks. Prior
to joining USI, he was a Post-Doctoral Associate at
Cornell University, Ithaca, NY, USA. For two years,
he was a research co-op with the Data Intensive
Systems and Analytics Group, IBM T. J. Watson
Research Center. His research interests are in dis-

tributed systems, networking, and applied programming languages.

Shrutarshi Basu is currently a Post-Doctoral
Fellow in computer science at Harvard University,
Cambridge, MA, USA. He is involving in the
legal applications and implications of computational
technologies, particularly programming languages
and associated tools and techniques. Previously,
he applied techniques and tools from programming
languages to software-defined networks and optical
networks.

IEEE/ACM TRANSACTIONS ON NETWORKING

Parisa Jalili Marandi received the Ph.D. degree
in computer science from Universita della Svizzera
italiana, Switzerland, in 2014. She is currently
an Applied Researcher at Microsoft Research
Cambridge, Cambridge, U.K. She is interested in
the theory and practice of large scale distributed sys-
tems, cloud computing, and resource optimization.

Fernando Pedone received the Ph.D. degree from
EPFL in 1999. He is currently a Full Professor with
the Faculty of Informatics, Universita della Svizzera
italiana, Switzerland. He has been also with Cornell
University, Ithaca, NY, USA, as a Visiting Professor,
EPFL, and Hewlett-Packard Laboratories. He has
authored more than 100 scientific papers and six
patents. He is a co-editor of the book Replication:
theory and practice. His research interests include
the theory and practice of distributed systems and
distributed data management systems.

Robert Kleinberg is currently an Associate
Professor of computer science at Cornell University,
Ithaca, NY, USA. His research pertains to the design
and analysis of algorithms, and their applications
to machine learning, economics, networking, and
other areas. Prior to receiving his doctorate from
MIT in 2005, he spent three years at Akamai
Technologies, where he assisted in designing the
world’s largest Internet CDN. He was a recipient
of the Microsoft Research New Faculty Fellowship,
the Alfred P. Sloan Foundation Fellowship, and

the NSF CAREER Award.

Emin Giin Sirer is the Co-Director of the Initiative
for Cryptocurrencies and Smart Contracts and an
Associate Professor of computer science at Cornell
University, Ithaca, NY, USA. His research interests
span distributed systems, operating systems, and
software infrastructure for large scale services. He is
known for his fundamental contributions to fintech
and the science behind blockchain technologies.

Nate Foster received the B.A. degree in computer
science from the Williams College, the M.Phil.
degree in history and philosophy of science from
Cambridge University, and the Ph.D. degree in com-
puter science from the University of Pennsylvania,
Philadelphia, PA, USA. He is currently an Associate
Professor of computer science at Cornell University,
Ithaca, NY, USA, and a Principal Research Engineer
at Barefoot Networks. The goal of his research is to
develop languages and tools that make it easy for
programmers to build secure and reliable systems.

His current work focuses on the design and implementation of languages
for programming software-defined networks. He received several awards,
including the Sloan Research Fellowship and the NSF CAREER Award.

http://dx.doi.org/10.1145/2342356.2342396
http://dx.doi.org/10.1145/352600.353052
http://dx.doi.org/10.1145/1594977.1592583
http://dx.doi.org/10.1145/2377677.2377680
http://dx.doi.org/10.1145/2815400.2815423
http://dx.doi.org/10.1145/1323293.1294265
http://dx.doi.org/10.1145/1629575.1629606
http://dx.doi.org/10.1145/2018436.2018465
http://dx.doi.org/10.1145/2018436.2018465

