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Forwarding and Routing With Packet Subscriptions
Theo Jepsen , Ali Fattaholmanan , Masoud Moshref, Nate Foster , Antonio Carzaniga, and Robert Soulé

Abstract— In this paper, we explore how programmable data
planes can naturally provide a higher-level of service to user
applications via a new abstraction called packet subscriptions.
Packet subscriptions generalize forwarding rules, and can be
used to express both traditional routing and more esoteric,
content-based approaches. We present strategies for routing with
packet subscriptions in which a centralized controller has a
global view of the network, and the network topology has a
hierarchical or general structure. We also describe a compiler
for packet subscriptions that uses a novel BDD-based algorithm
to efficiently translate predicates into P4 tables that can support
O(100K) expressions. Using our system, we have built eight
diverse applications. We show that these applications can be
deployed in brownfield networks while performing line-rate
message processing, using the full switch bandwidth of 6.5Tbps.

Index Terms— Publish/subscribe, information-centric net-
working, network programmability (SDN/NFV/In-network
computing).

I. INTRODUCTION

THE advent of programmable data planes [1]–[3] is having
a profound impact on networking, with clear benefits to

network operators (e.g., increased visibility via fine-grained
network telemetry) and to switch vendors (e.g., software
development is faster and less expensive than hardware devel-
opment). However, the benefits to users are still relatively
unexplored, in the sense that today’s programmable data planes
offer the same forwarding abstractions that fixed-function
devices have always provided—e.g., match on IP address,
decrement TTL, and send to the next hop.

While the Internet is based on a well-motivated design [4],
classic protocols such as TCP/IP provide a lower level of
abstraction than modern distributed applications expect, espe-
cially in networks managed by a single entity, such as data
centers. As a case in point, today it is common to deploy
services in lightweight containers. Address-based routing for
containerized services is difficult, because containers deployed
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on the same host may share an address, and because containers
may move, causing its address to change. To cope with these
networking challenges, operators are deploying identifier-
based routing, such as Identifier Locator Addressing (ILA) [5].
These schemes require that name resolution be performed as
an intermediate step. Another example is load balancing: to
improve application performance and reduce server load, data
centers rely on complex software systems to map incoming IP
packets to one of a set of possible service end-points. Today,
this service layer is largely provided by dedicated middle-
boxes. Examples include Google’s Maglev [6] and Facebook’s
Katran [7]. A third example occurs in big data processing sys-
tems, which typically rely on message-oriented middleware,
such as TIBCO Rendezvous [8], Apache Kafka [9], or IBM’s
MQ [10]. This middleware allows for a greater decoupling
of distributed components, which in turn helps with fault
tolerance and elastic scaling of services [11].

Although the current approach provides the necessary
functionality—the middleboxes and middleware abstracts
away the address-based communication fabric from the
application—the impedance mismatch between the abstraction
that networks offer and the abstraction that applications need
adds complexity to the network infrastructure. Using middle-
boxes to implement this higher-level of network service limits
performance, in terms of throughput and latency, as servers
process traffic at gigabits per second, while ASICs can process
traffic at terabits per second. Moreover, middleboxes increase
operational costs and are a frequent source of network fail-
ures [12], [13]. Given the existence of programmable devices,
can’t we do better?

In this paper, we propose a new network abstraction called
packet subscriptions. A packet subscription is a stateful predi-
cate that, when evaluated on an input packet, determines a for-
warding decision. Packet subscriptions generalize traditional
forwarding rules; they are more expressive than basic equality
or prefix matching and they can be written on arbitrary,
user-defined packet formats. A packet subscription compiler
generates both the data plane configuration and the control
plane rules, providing a uniform interface for programming
the network. Packet subscriptions easily express a range of
higher-level network services, including pub/sub [11], in-
network caching [14], [15], and identifier-based routing [5].

In some respects, packet subscriptions share a similar moti-
vation to prior work on content-centric networking [16]–[19].
However, in contrast to this prior work, we are not propos-
ing a complete re-design of the Internet [19], [20]. Instead,
we argue that higher-level network abstractions are already
used extensively by distributed applications, and this func-
tionality can be naturally provided by the network data plane.
Moreover, packet subscriptions can be implemented efficiently
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in controlled, data center deployments, in which the entire
network is in a single administrative domain, and opera-
tors have the freedom to directly tailor the network to the
needs of the applications. Packet subscriptions interoperate
with other routing schemes (e.g. IP), so they are also suit-
able for brownfield deployments with heterogeneous network
devices.

Furthermore, although security is an important concern
for any network design, the controlled data center setting
mitigates some of the most pressing security issues. More-
over, it is reasonable to assume that for applications that
utilize a publish/subscribe style of communication, the data
is public.

Supporting packet subscriptions as a network-level service
requires addressing a series of challenges. At the network-
wide level, the challenge is routing. Analogous to IP, routing
on packet subscriptions amounts to placing and possibly
combining rules throughout the network so as to induce the
right flows of packets from publishers to subscribers. At the
switch-local level, the main problem is forwarding, meaning
efficiently matching packets against a set of local rules. Also
at the switch-local level, there are technical challenges in
efficiently parsing structured packets and allocating switch
memory.

To address these challenges, we have designed a new net-
work architecture, named Camus. Applications provide Camus
with filters written in a packet subscription language. Camus
provides a controller component that determines a global
routing policy based on the subscriptions, and a compiler com-
ponent that generates the control and data plane configurations
for the local forwarding decisions that collectively realize the
routing strategy.

At the routing level, Camus offers two different routing
strategies for hierarchical topologies. One strategy reduces
the number of forwarding rules stored in switches at the
expense of routing all traffic through the network core. The
second strategy makes the opposite trade-off; it avoids sending
traffic through the core, at the expense of greater storage
requirements. Both strategies assume a data-center network
deployment, in which a centralized controller has a global
view of the network, and the network topology is organized as
a hierarchical structure, such as a Fat Tree or Clos architecture.
For general topologies, Camus constructs and routes on a
spanning tree of the topology.

With respect to forwarding, naïvely translating packet sub-
scriptions into FIB entries would require significant amounts
of TCAM and SRAM memory, which is a scarce resource on
network hardware. Instead, Camus uses an algorithm based
on Binary Decision Diagrams (BDDs) [21], [22]. The Camus
compiler translates logical predicates into P4 tables that can
support O(100k) filter expressions within the limited resources
of a programmable switch ASIC. Moreover, Camus provides
functionality for parsing application-specific message formats,
which requires reading deeply into the packet, and processing
messages that have been batched together into a single network
packet.

We have used Camus to provide communication for eight
diverse applications. We performed an in-depth performance

evaluation for three of them: a financial application for
filtering market feeds (i.e., the ITCH protocol provided
by NASDAQ); video streaming services using Cisco’s hybrid
ICN (hICN) [23]; and in-band network telemetry (INT) event
detection. This diversity of applications demonstrates the flex-
ibility and expressiveness of Camus. Moreover, our prototype
demonstrates substantial improvements in throughput over
software based alternatives, while processing messages at
line-rate.

This paper extends our workshop [24] and conference [25]
papers by demonstrating the utility and expressiveness of
packet subscriptions with additional example applications, and
expanding the discussion on architecture practicality. Overall,
this paper makes the following contributions:

• It introduces a high-level design of a packet subscription
language targeting programmable ASICs (§II).

• It demonstrates a strategy to route via packet
subscriptions in hierarchical and general network
topologies.(§IV).

• It presents an algorithm to efficiently compile packet
subscription to P4 tables and control plane rules (§V).

• It describes techniques for parsing batches of application-
level messages deep inside a packet (§VI).

• It experimentally evaluates an implementation of in-
network pub/sub using packet subscriptions against soft-
ware based alternatives (§VIII).

II. PACKET SUBSCRIPTIONS

A packet subscription is a filter that determines whether
a packet is of interest, and therefore whether it should be
forwarded to an application. So, when end-points submit a
packet subscription to the global controller, they are effectively
saying “send me the packets that match this filter”. The
following is an example of a stateless filter:

ip.dst == 192.168.0.1

It indicates that packets with the IP destination address
192.168.0.1 should be forwarded to the end-point that
submitted this filter.

One can interpret this filter the traditional way: each
host is assigned an IP address, and the switches for-
ward packets toward their destinations. However, in this
traditional interpretation, the network is responsible for
assigning IP addresses to end-points. Instead, with packet
subscriptions it is the application that assigns IP addresses.
In other words, packet subscriptions empower applications
with the ability to define the routing structure for the
network.

Another interpretation is that the subscription is equiva-
lent to joining a multicast group with a given IP address.
However, with packet subscriptions, the IP address has no
particular global meaning, and instead it is just another
attribute of the packet. Applications can use other attributes
for routing, and in particular they can express their inter-
ests by combining multiple conditions on one or more
attributes.

For example, suppose that a trading application is interested
in ITCH messages about Google stock. The following filter
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Fig. 1. Packet subscription language abstract syntax.

matches ITCH messages where the stock field is the constant
GOOGL and the price field is greater than 50:

stock == GOOGL ∧ price > 50

Packet subscriptions may also be stateful—i.e., their behav-
ior may depend on previously processed data packets. To spec-
ify a stateful packet subscription, we can use operations on
variables in the switch data plane, such as computing a moving
average over the value contained in a header field:

stock == GOOGL ∧ avg(price) > 60

In addition to checking the stock field, this filter requires that
the moving average of the price field exceeds the threshold
value 60. The macro avg stores the current average, which is
updated whenever the rest of the filter matches.

In general, a packet subscription is a logical expression of
constraints on individual attributes of a packet or on state
variables (see Figure 1). Each constraint compares the value
of an attribute or a state variable (or an aggregate thereof) with
a constant, using a specified relation. The Camus subscription
language supports basic relations over numbers (e.g., equality
and ordering) and over strings (e.g., equality and prefix).

The packet subscription language is designed to be expres-
sive while also allowing for an efficient realization in the
network [26]. In particular, the simple structure and semantics
is easy to understand, since it corresponds to a very basic
query language such as a subset of the WHERE clause of an
SQL expression. The structure and semantics is also versatile
and expressive, since it can represent non-trivial conditions
over application-defined data within packets. And, crucially,
subscriptions can be aggregated, using exact or approximate
reductions, and then compiled into appropriate table structures
for fast evaluation in network switches. As we will see later
in Section V, the aggregation and reduction algorithms exploit
the simple structure of subscriptions, as well as the semantics
of the numeric and string relations.

The language also supports stateful predicates, to a limited
extent. First, it can only evaluate predicates that reason about
local state. It cannot filter on global state (e.g., the sum
of values at more than one device). Second, re-evaluating
stateful predicates on multiple devices can lead to unexpected
results (e.g., the average of the average of the average).
Therefore, it only evaluates stateful functions at the last hop
switch before a subscriber. And, third, due to the underlying
hardware constraints, the types of computations it can perform
is limited. For these reasons, the stateful functions that it
supports are restricted to basic aggregations over tumbling

Fig. 2. Overview of camus.

windows, including count, sum, and average. This is similar
to systems such as Linear Road [27] and Sonata [28].

III. NETWORK ARCHITECTURE

Adopting packet subscriptions as a new network abstraction
requires that we re-think the network architecture. Figure 2
illustrates the architecture design. Subscribers express interest
in messages, and publishers send messages. The switches
running the Camus pipeline process the messages and forward
them to interested subscribers.

Camus assumes a logically centralized controller with an
omniscient view of the network (i.e., the current topology and
device state). One could imagine a decentralized version of
Camus, whereby each switch control plane runs the Camus
compiler, and subscription information is disseminated through
the network (à la conventional routing protocols). However,
we leave such a design for future work.

Applications provide the controller with a set of filters
written in the Camus subscription language. The application
domain is characterized by a set of headers and correspond-
ing packet formats. Camus requires that headers and packet
formats be specified through user-provided P4 code.

The Camus controller combines the end-point subscrip-
tions and computes a global routing policy. Although Camus
supports general topologies, we focus on static, hierarchical
network topologies, such as the Fat Tree architecture. This
architecture is common in data-center networks [29], which
is our expected deployment for packet subscriptions. It also
simplifies the job of the controller, as the topology naturally
forms tree-structures by simply distinguishing links that go up
or down the hierarchy. We discuss how routing is handled by
Camus in Section IV.

To implement the routing policy, the controller emits a
set of local rules that are compiled to run on the individual
switches in the network. These rules determine the runtime
control plane configuration of the switch, whereas the static
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Fig. 3. Routing on subscriptions in the fat tree topology: routing policies.

data plane is configured once using the user-provided packet
format specification. Camus relies on programmable switch
hardware [1], [2] to realize an application-specific packet
processing pipeline. Our prototype implementation uses the
P4 compiler to program the switch.

More specifically, the Camus compiler takes the generated
rules together with the P4 packet header specification, and
generates two outputs: (i) a P4 control block that specifies
the control-flow and match-action tables in the pipeline, and
(ii) a set of control-plane rules to populate the tables. The
P4 compiler then takes the P4 parser specification (packet
format) and the control block generated by the Camus com-
piler to generate the switch image for the packet processing
pipeline. We discuss the details of compiling and forwarding
in Section V.

Forwarding with packet subscriptions requires that the gen-
erated pipeline can parse application-specific message formats,
which are often deep in the packet header. In Section VI,
we present techniques to read deep into the packet, and process
messages that have been batched together into a single network
packet.

IV. ROUTING ON SUBSCRIPTIONS

Routing, in general, is a complex issue that raises a number
of challenges. We start with hierarchical topologies that are
typical in data centers, which are the primary focus of this
paper. Then we also show that similar routing schemes can
also work on general network topologies.

A. Hierarchical Topologies

We evaluate two approaches to routing with packet subscrip-
tions on an arbitrary hierarchical datacenter topology. These
two strategies explore trade-offs between memory and traffic.
Neither of these schemes is “better”, in the sense that the
choice between them depends on the needs and resources of
the specific network.

B. Expected Datacenter Deployment

We assume a static, hierarchical network such as a Fat
Tree [29] topology. This removes some of the complex-
ity of routing since the topology already enforces tree-like
structures in which all simple paths are shortest paths.

Figure 3 illustrates an example with three levels in the hierar-
chy: a top-of-rack layer (ToR), an aggregate layer, and a core
layer.

Considering the chosen context (datacenters), Camus cur-
rently relies on a centralized controller with a global view of
the network. However, there is nothing inherent in the design
of packet subscriptions that prevents the use of distributed
routing protocols, like BGP or OSPF.

C. Routing Policies

The main task of the controller is to convert the subscrip-
tions into a global routing policy, and then generate local rules
for every switch in the network to realize the policy.

A routing policy associates each port p in a switch s with
a set of filters F s

p . Switch s forwards an incoming packet
to all the ports p, other than the ingress port, such that the
packet matches at least one filter in F s

p . Figure 3 shows
these associations for two policies that we discuss below.
The diagrams focus on the router along a particular set of
paths (a tree) taken by messages originating from an ITCH
publisher on the left-hand side of the network, and going
to two subscribers on the right-hand side. For each switch
s along those paths, the diagrams show the local forwarding
rules derived from the corresponding sets F s

p .
Since we focus on specific paths, in the diagrams we refer to

each specific port numbers. However, Camus treats the upward
ports of a switch—those that link to higher-layer switches—as
a single logical up port. For example, ports 1 in the ToR and
aggregate layers are all up ports. When forwarding a packet to
the up port, Camus actually chooses one of the corresponding
physical ports, at random or round-robin (ECMP could be used
for flow-based protocols). Also, a packet received on one of
the upward ports is never forwarded to the up port.

As a general correctness condition, F s
p must match a super-

set of the packets identified by the subscriptions of the hosts
reachable from switch s through port p (completeness). And
when port p leads directly to a host h, F s

p must match the
exact set of packets to which h has subscribed (soundness).
Different correct policies may then differ in how precisely
each set F s

p approximates the exact set of packets that must
be forwarded from s through p. Intuitively, a loose F s

p would
require fewer rules and therefore less switch memory, but
would also generate unnecessary traffic.
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Algorithm 1: Routing in a Fat Tree Network

Input: Network = (Hosts ,Switches , access , up, down)
Input: access : Hosts → (Ports × Switches)
Input: up : Switches → (Ports × Switches)∗

Input: down : Switches → (Ports)∗

Input: Subscriptions : Hosts → Filter∗

Output: A set of sets of subscriptions
F = {F s

p : s ∈ S, p ∈ P}
1 foreach switch s and port p do
2 F s

p ← ∅
3 foreach h ∈ Hosts do
4 s, p← access(h) � h connects to s on port p
5 F s

p ← F s
p ∪ Subscriptions(h)

6 foreach src ∈ Switches , bottom up do
7 F src ← ∅ � local, temporary set
8 foreach p ∈ down(src) do
9 � bottom up, so F src

p already computed
10 F src ← F src ∪ F src

p

11 foreach dst , q ∈ up(src) do src connects to dst on
dst ’s local port q

12 F dst
q ← F dst

q ∪ F src

13 if memory policy then Memory Reduction
14 foreach src ∈ Switches do
15 F src

up ← {true}
16 else if traffic policy then Traffic Reduction
17 foreach src ∈ Switches do
18 dst , q ← first up link ∈ up(src)
19 F src

up ← ∅
20 foreach p ∈ down(dst) do
21 if p �= q then
22 F src

up ← F src
up ∪ F dst

q

Camus implements two policies: one that favors mem-
ory (MR) and one that favors traffic (TR), illustrated in
Figure 3. In the first policy, every downward port d is asso-
ciated with a set F s

d that matches the exact (minimal) set of
packets that are of interest to hosts reachable through d, while
F s

up is the true filter that matches every packet. In the second
policy, F s

up also matches the exact and therefore minimal set of
packets that are of interest to hosts reachable through (one of)
the up port. The controller uses Algorithm 1 to compute the
filter sets F s

p for all switches and ports.

D. Filter Approximation Scheme

In addition to the somewhat crude approximation used in
the memory reduction policy that simply replaces all the filters
associated with an up port with a single true filter, we also
develop a more refined approximation based on filter rewriting.
This rewriting is specifically designed to control the amount
of false positives, and at the same time to favor aggrega-
tion of filters. This aggregation is particularly beneficial in

combination with the optimizations performed by the Camus
compiler for each local switch.

The general idea of this approximation scheme is to rewrite
individual constraints so as to reduce the number of unique
constraints. One way to do that, is to discretize and therefore
cluster the comparison constants used in the constraints. In par-
ticular, Camus rewrites all numeric constants as multiples
of a chosen discretization unit α. For example, choosing
α = 10, Camus would rewrite constraints price > 53 and
price > 57 as price > 50, and correspondingly con-
straints price < 53 and price < 57 as price < 60.
As we show experimentally in Section VIII, this simple
scheme leads to significant improvements in the compilation
time and also in the aggregation of filters, at the expense of
only a modest increase in traffic.

Once the sets of filters are computed for each link, the
Camus controller turns these sets of subscriptions into an inter-
mediate representation, which is then compiled and installed
onto the switch. The intermediate representation appends a
forwarding directive to the subscription filter.

Returning to the running example, if the trading application
running on a server connected to port 1 of a switch is interested
in ITCH messages about Google stock, then the localized rule
at the last hop switch would be:

stock == GOOGL: fwd(1)

The rule asserts if the field stock is equal to the constant
GOOGL, then the message should be forwarded to port 1. A
forwarding action may be unicast or multicast:

stock == GOOGL: fwd(1,2,3)

In this case, messages are forwarded to ports 1, 2, and 3.
The routing schemes we describe require that predicates

be re-evaluated at every switch that packets pass through.
We considered, but did not implement, an alternative design
in which paths through the network would be enumerated
and each associated with a “tag”. Predicates evaluated at the
edge would attach a tag indicating the path that the packet
should take. This design seemed like an appealing way to
reduce the work done by each switch. However, since multiple
predicates can match on a given packet, one would need to
attach multiple path tags to each packet. Then the switch
would need to check for equality on all of these tags. So,
there would not really be an advantage; we would just need
to generate an equivalent rule that matches on tags instead
of application header fields. Nevertheless, we expect that
there should be methods to optimize the storage of rules,
since there could be overlap in rules at higher levels in the
hierarchy.

E. General Topologies

Routing in general topologies presents challenges not
present in hierarchical topologies. Hierarchical topologies are
loop-free by construction (in combination with extremely
simple forwarding rules) even for multicast flows such as the
ones induced by subscriptions. With general topologies, the
routing scheme must be designed to avoid loops. A general
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way to do that is to route on trees as suggested in previous
work [30].

At a basic level, the control plane builds one or more
spanning trees, each with its associated FIB entries computed
from the subscriptions. As in the TR routing policy described
in Section IV-A, each edge (u, v) in a tree defines a partition
of the subscriptions of the whole network into two sets: those
on the u side (including those of u, if any), and those on the
v side (including v). So, the FIB on u must contain rules that
represent all the subscriptions on the v side, and must assign
those rules to the port that connects u to v. And vice-versa, the
FIB on v must contain rules that represent all the subscriptions
on the u side, assigned to the port that connects v to u. With
these FIBs in place, every packet is initially assigned to and
therefore routed within one tree.

This basic scheme can be realized in various ways with
many generic and specific optimizations. There are various
optimization criteria when constructing the trees. For exam-
ple, minimizing the distances between nodes, on average or
for high-intensity publishers, or reducing the memory (FIB
entries) required on all or specific switches. It is also possible
to aggregate the FIBs associated with different trees [30] so
that the overall memory complexity is sublinear in the number
of trees. There are also various strategies for assigning packets
to trees.

As stated earlier, our primary focus in this paper is on
data-center deployments, so we present a routing scheme for
general topologies only at a high level, and we limit our
analysis only to memory usage.

In particular, we present two tree-construction algorithms
that are intended to work well with the BDDs built by Camus.
Both algorithms are based on minimal spanning trees (MST)
computed using Prim’s algorithm. The first algorithm, which
we simply refer to as MST, construct a minimum spanning tree
considering all edges having equal weight w(u, v) = 1. With
uniform weights, this algorithm does not select any particular
MST and therefore serves as a general baseline.

The second algorithm, which we call MST++, uses a
heuristic edge-weight function w(u, v) = deg(u)deg(v),
where deg(v) is the degree of vertex v. This leads to
low-degree spanning trees. (Finding an MST of minimal
degree is NP-hard.) Using a low-degree tree means that,
in each switch, all the subscriptions are partitioned into a
few groups each associated with a local port. This in turn
allows the Camus compiler to achieve higher rates of com-
pression for its BDD. The experimental evaluation presented
in Section VIII-V shows that the MST++ algorithm is indeed
effective in reducing memory usage (FIB entries).

V. FORWARDING WITH SUBSCRIPTIONS

With local subscriptions assigned by the controller to a
switch, Camus sets up the forwarding structures on that switch.
The key challenge is to compile subscriptions to forwarding
structures that are memory efficient and run at line-rate.

Camus compiles the rules into two steps: static and
dynamic. The static step is performed once per application, and
generates the packet processing pipeline (i.e., packet parsers

Fig. 4. Specification for ITCH message format.

and a sequence of match-action tables) deployed on the switch.
The dynamic compilation step is performed whenever the
subscription rules are updated, and generates the control-plane
entries that populate the tables in the pipeline.

This compilation strategy assumes long-running, mostly
stable filters. Supporting highly dynamic filters would require
an incremental algorithm. Prior work has demonstrated that
such incremental algorithms are feasible. BDDs—our primary
internal data structure—can leverage memoization [31], and
state updates can benefit from table entry re-use [32].

A. Compiling the Static Pipeline

In general, a packet processing pipeline includes a packet
parsing stage followed by a sequence of match-action tables.
The compiler installs different pipelines for each application,
as different applications require different protocol headers,
packet parsers, and tables to match on header fields.

To generate the static plane, users provide a message format
specification, based on data packets structured as a set of
named attributes. Each attribute has a typed atomic value. For
example, a particular ITCH data packet representing a financial
trade would have a string attribute called stock, and two
numeric attributes called shares and price.

Figure 4 shows the specification for the ITCH applica-
tion. The message format specification extends a P4 header
specification with annotations that indicate state variables and
fields that will be used by the filters. In the figure, lines 8–11
contain annotations indicating that the fields shares, price,
and stock from the itch_order header will be used in
subscriptions. Thus, the compiler should generate P4 code that
matches on those fields. As an optimization, users may specify
the match type. The annotation on line 10 specifies that the
match should be exact by appending the suffix _exact. The
annotation on line 11 declares a counter state variable. The
first argument is the name of the counter (my_counter) and
the second is its window size (100μs).

To support state variables, the compiler statically pre-
allocates a block of registers that are then assigned to specific
variables dynamically. The compiler also outputs the necessary
code to update state variables in response to subscription
actions at periodic intervals—e.g., to implement the tumbling
window used on line 11 in Figure 4. Notice that the use
(read/write) of state variable is determined by subscription
rules, which are not known statically. Therefore, the static
compiler outputs generic code for various update functions,
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Fig. 5. BDD for three rules. Solid and dashed arrows represent true and
false branches, respectively.

and the dynamic compiler effectively links subscription actions
to that code. In particular, the dynamic compiler links an
update action of the general form var ← fun(args) with a
subscription action by associating that action to what amounts
to pointers to var, fun, and args . However, the dynamic com-
piler in our current prototype only supports actions without
arguments.

B. Compiling Dynamic Filters

A naïve approach for representing subscription rules would
use one big match-action table containing all the rules—each
rule would be encoded using a single table entry. However, this
approach would be inefficient because the table would require
a wide TCAM covering all headers but containing only a few
unique entries per header. Furthermore, programmable switch
ASICs only support matching a single entry in a table, but a
packet might satisfy multiple rules. Hence, we would require
a table entry for every possible combination of rules, resulting
in an exponential number of entries in the worst case.

Instead, our compiler generates a pipeline with multiple
tables to effectively compress the large but sparse logi-
cal table used by the program. To do this, the compiler
represents the subscription rules using a binary decision
diagram (BDD) [21], [22]. BDDs are often used to obtain
compact representations of functions on a wide input domain
for which a single table would be too large. A BDD is a
rooted acyclic graph in which non-terminal nodes encode
conditions on the input and terminal nodes encode the results
(see Figure 5).

The evaluation of the overall function of the BDD that
encodes all subscription rules starts at the root node and recur-
sively evaluates the conditions (if) at each node, proceeding to
the true (then) or false (else) branch as appropriate. Evaluation
terminates when it reaches a terminal node (actions).

We now briefly describe the algorithm for building a BDD
out of subscriptions rules. What is important for our purposes
is to define the structure of the BDD, so we can implement
the BDD evaluation as a sequence of table lookups.

C. Representing Rules with a BDD

The subscription rules are first normalized into disjunctive
form, yielding a set of independent rules in which the condi-
tion in each rule consists of a conjunction of atomic predicates.

An atomic predicate is defined by an equals, greater-than,
or less-than relationship between a field and a constant. For
example, the rules in Figure 5 are in disjunctive normal form.
The compiler then builds the BDD incrementally by evaluating
the condition at each node using the Shannon expansion and
adding nodes for the predicates in the condition as needed.

The compiler reduces the BDD using a combination of
standard and domain-specific transformations. (i) If two nodes
are isomorphic, one is deleted. The incoming edges of the
deleted node are updated to point to the remaining copy. (ii) If
both outgoing edges of a node point to the same successor,
then that node is deleted. The incoming edges of the deleted
node are updated to point to the successor. (iii) If any ancestors
n′ of a new node n implies that n is always true or always
false (based on domain-specific knowledge of the filter), then
n is not added; instead, it reduces to a direct connection to
its true or false branch, respectively. The overall effect is
to share common structure and remove redundant nodes and
unsatisfiable paths [33].

As is standard in ordered BDDs, the conditions in the
BDD are arranged in a fixed order. For example, every path
in the BDD of Figure 5 consists of a sequence of atomic
predicates such that the conditions on field shares precede
the conditions on field stock. This is essential for the
representation and evaluation of the BDD as a sequence of
table lookups, as we discuss next. The choice of an order
can significantly impact the size of a BDD. Determining an
optimal field order is NP-hard, but simple heuristics often work
well in practice.

D. BDDs to Tables

The BDD can be seen as a state machine, where each state
corresponds to a predicate, and the transition function is the
evaluation of the predicate on the input packet. However, this
naïve evaluation would require an excessively long sequence
of evaluation steps. We instead implement BDD evaluation
using a fixed-length pipeline.

Since every path in the BDD traverses predicates that
consider fields in order, and that order is the same for every
path, we use that ordering to effectively slice the BDD into a
fixed number of field-specific components. Each component is
a subgraph of the BDD that contains all and only those nodes
that predicate on a particular field. By extension, we also con-
sider the set of terminal nodes as a component. For example,
the BDD in Figure 5 has three components consisting of the
blue, yellow, and red nodes, corresponding to the shares
and stock fields, and to actions, respectively.

We can now consider the evaluation of the BDD as a
state-machine at the level of the field-specific components.
Thus the transition function out of the component of field f
depends on the value of field f in the packet. However, since
the component of field f is a macro-state corresponding to
potentially many states of the BDD, the transition function
must also depend on the BDD state in which we enter the
component. This entry BDD state and the value of field f
are necessary and sufficient to determine the path through
the component of field f and therefore the transition function
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Fig. 6. Table representation of the BDD in Figure 5.

Algorithm 2: Translating BDD to Tables
Input: The BDD graph, G
Output: A set of tables Tf : state × dom(f)→ state

1 foreach field f do
2 Cf ← subgraph of G predicating on field f
3 In ← {n ∈ Cf with in-edges from outside Cf }
4 Out ← {n �∈ Cf with in-edges from Cf }
5 foreach path p = (u ∈ In, . . . , v ∈ Out) in Cf do
6 range ← 	 � all allowable values for field f
7 foreach node n ∈ p do
8 range ← range ∩ predicate(n)

9 Tf ← Tf ∪ {(u, range) �→ v}

for that component. We represent this transition function as a
match-action table where we match on the entry state and on
the value of field f , and where the action points to the next
component and BDD state.

Figure 6 shows all the component-specific match-action
tables corresponding to the transition functions for the BDD
of Figure 5. The three tables also define the three-stage
processing pipeline. The evaluation through the pipeline stores
the current BDD state in metadata. The initial state is set to 0
and can be omitted entirely from the first table. The actions
define the entry state for the next stage, except for the Leaf
table where the action corresponds to the overall evaluation of
the BDD. For example, the rightmost path through the BDD
in Figure 5 corresponds to the path through the 2nd, 4th, and
3rd entries of the Shares, Stock, and Leaf tables in Figure 6.

Notice that it is possible for multiple rules to match the
same packet. For example, in Figure 5, the first two rules
could match the same packet, so the actions fwd(1) and
fwd(2) are merged into the single action fwd(1,2). The
compiler translates this to forwarding to a multicast group that
comprises ports 1 and 2.

We compute the transition tables with Algorithm 2.
In essence, for each field-specific component Cf in the BDD,
Algorithm 2 identifies a set of In nodes within Cf that are the
destinations of all the edges that enter Cf from components of
preceding fields, and a set of Out nodes outside Cf that are the
destinations of all the edges that exit from Cf to components
of succeeding fields. Then Algorithm 2 computes the transition
table by iterating over all the paths that connect In and Out
nodes. In general, a BDD could have an exponential number
of such paths. However, the domain-specific optimizations we

use guarantee that there is at most one path between any pair
of In and Out nodes, which in turn guarantees that the number
of paths is at most quadratic.

E. Resource Optimizations

One of the scarce resources in switching ASICs are TCAM
memories that allow matching on a subset of bits in headers
but consume large area of die and high power. The com-
piler uses three techniques to reduce TCAM usage. First,
by default the compiler generates P4 code that implements
range matches, which usually require an expensive TCAM
lookup. However, the user can guide the compiler by spec-
ifying a matching type for each field that may not require
a TCAM lookup. Second, matching on a range in TCAM
is not scalable to hundreds of thousands of ranges as each
range-match requires multiple TCAM entries (O(#bits)).
To cope with this, the compiler uses exact matches instead
of range when possible, allowing it to leverage SRAM while
saving TCAM. Third, some fields, like shares, will probably
have only a few unique range predicates. The compiler can
map values for that field and the corresponding range predi-
cates onto a lower-resolution domain (e.g., 8-bits).

VI. EFFICIENT PACKET PARSING

There are two major challenges that Camus must address
with respect to packet parsing: (1) generating multiple copies
of a packet with different subsets of messages, and (2) parsing
deep inside the packet to handle all application messages.

There are three key observations about the functionality
of the hardware that we leverage for efficient parsing. First,
a switch may advance arbitrarily deep in a packet in the
parsing stage if the packet bytes are not written to the
Packet Header Vector (PHV) that is sent through the pro-
grammable pipeline. Second, packets may only be replicated
in the cross-bar between the ingress and egress pipelines.
Third, a number of ports may be dedicated as recirculation
or loopback ports, which re-send packets back through the
pipeline. Recirculating a packet effectively increases the depth
of the processing pipeline, allowing for additional processing
at the expense of slightly increased latency and reduced overall
throughput.

A. Per-Subscriber Subsets of Messages

To send different subsets of a message to different desti-
nations, Camus uses the following strategy. First, the ingress
pipeline creates a port mask that indicates which messages
should be sent to which port on a switch. Next, in the
crossbar, Camus replicates the packet, creating a separate
copy for each output port. Finally, at egress, Camus uses
the port mask to prune different messages from each of
the replicas, filtering appropriately for each port. To avoid
sending the port mask from ingress to egress naïvely, which
would add bandwidth overhead, Camus uses a domain-specific
optimization. It stores the mask in an unused packet header
field (e.g. ethernet.srcAddr, which will be overwritten
at the end of the pipeline anyway).
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Fig. 7. ITCH ingress parser for 3 loopback ports.

B. Parsing Deep

Since hardware switches have limited memory for carrying
packet data through the programmable pipeline, it may not be
possible to parse all application-level messages in a single
pass. Figure 7 shows the state machine for parsing deep
into the packet. Camus processes the messages in multiple
parallel passes after the first pass. In the first pass, it multicasts
packets on recirculation ports to make multiple copies. When
the copies return to ingress, each recirculation port starts
parsing at different offsets of each copy. This technique is
implemented in a parser loop: the red boxes in Figure 7
show that in each iteration the parser matches on a counter
(ctr); updates the counter; and shifts the parser buffer with-
out extracting any headers. Then, the parser reads messages
and finally truncates the outgoing packets using another
loop to remove the messages that cannot be parsed (blue
boxes). This design is also extensible to multiple recirculation
passes.

VII. DISCUSSION

The main goals of this work are to: (i) provide applications
with a more expressive interface to the network, while (ii)
providing high throughput and low latency communication.
Although these two goals are not inherently incompatible,
there is a tradeoff between the two. To realize a practical
solution, we had to consider a few delicate aspects:

A. Fixed-Width Headers

To support packet processing at line rate, Camus only sup-
ports fixed-width headers. This is not an issue for many appli-
cations that already use fixed-width headers (e.g., ITCH, ILA,
INT). Other applications can use libraries like Flatbuffers [34]
which use binary serialization formats.

B. Streams

As the name implies, packet subscriptions operate on indi-
vidual packets (or datagrams). The design in this paper already
supports subscribing to a stream if each packet in the stream

contains the same header that is used by the filter. Subscribing
to streams where the header is only present in the first
packet would require the switch to store the matching rule
of the first packet, and apply it to subsequent packets in the
stream.

C. Multicast Groups

When multiple filters overlap, i.e. they match the same
packet, the packet may have to be forwarded out multiple
ports. Camus handles this by associating a multicast group
with the set of overlapping filters. Multicast groups are a
limited resource on the switch, so Camus cannot support an
unbounded number of overlapping subscriptions. In practice,
subscriptions are selective, so the number of multicast groups
on the switch is not a limiting factor (see our evaluation in
Section VIII-IV).

VIII. EVALUATION

The central thesis of this paper is that the network can
and should provide higher-level abstractions than those cur-
rently offered. To evaluate this claim, the first part of our
evaluation focuses on cases studies. We relate our experiences
building eight diverse applications to demonstrate qualita-
tively that packet subscriptions are expressive and benefi-
cial. The second part of our evaluation focuses on oper-
ational aspects, demonstrating that the abstraction can be
practically and efficiently implemented and deployed. Over-
all, the evaluation is structured along five main research
questions:

Q1: Are packet subscriptions useful and expressive
enough to implement a diversity of applications?

Q2: Does the Camus architecture have a reasonable and
practical design?

Q3: What is the impact of packet subscriptions on appli-
cation performance?

Q4: Is forwarding with packet subscriptions efficient,
in terms of performance and memory?

Q5: Is routing with packet subscriptions efficient,
in terms of traffic load and memory (FIB)?

A. Implementation

The evaluation uses our prototype compiler implementation,
which was written in OCaml, and is publicly available.1 The
compiler parses the application specifications written in P416

using the p4v library [35], patched to support our custom
annotations. We use our own implementation of a multi-
terminal BDD library with reduction optimizations.

B. Experimental Setup

We ran Camus in our cluster with three 32-port Barefoot
Tofino switches and four servers, with varying topologies.
Each server was running Ubuntu 16.04 on 12 cores (dual-
socket Intel Xeon E5-2603 CPUs @ 1.6GHz), 16GB of
1600MHz DDR4 memory, and Intel 82599ES 10Gb or Mel-
lanox ConnectX-5 100Gb Ethernet controllers.

1https://github.com/usi-systems/camus-compiler
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C. Q1: Expressiveness

To evaluate the utility and expressiveness of packet subscrip-
tions, we implemented eight different applications. We chose
these applications because they: (i) represent a diverse
domain space, (ii) exercise packet subscriptions in different
ways, and (iii) are inspired by real-world applications and
use-cases.

1) Market Data Filter: Financial exchanges, such as the
Nasdaq stock market and the Chicago Mercantile Exchange,
publish price and trade-related information in market data
feeds. Different exchanges use different message formats.
Nasdaq publishes data in the ITCH format.

ITCH data is delivered to subscribers as a stream of IP mul-
ticast packets, each containing a UDP datagram. Inside each
UDP datagram is a MoldUDP header containing a sequence
number, a session ID, and a count of the number of ITCH
messages inside the packet. There are several ITCH message
types. An order message indicates a new order that has been
accepted by Nasdaq. It includes the stock symbol, number of
shares, price, message length and a buy/sell indicator. In the
descriptions below, packet subscriptions can refer to fields
in the traditional header stack, or in the application-specific
message format.

This application is an implementation of the Nasdaq ITCH
Market data feed filter and router. The feed is delivered as a
stream of IP multicast packets. The switch splits ITCH packets
into multiple messages, and forwards them to back-end servers
based on the subscription.

2) Network Telemetry Analytics: One recent approach to
network monitoring is to collect fine grained statistics on
every packet that passes through a switch [36], [37]. Once
the data is collected, it is sent to an analytics system for
processing, such as Barefoot Networks Deep Insight [38]
or Broadcom’s BroadView Analytics [39]. These analytics
systems are usually built following the Lambda architec-
ture design [40] (e.g., Spark [41] for anomaly detection,
Cassandra [42] for storage, and Kafka [9] for communication),
which requires each of the components to scale out to cope
with the input load. We used packet subscriptions to filter
and route interesting (i.e., anomalous) events from the stream
of in-band network telemetry (INT) data. For example, the
subscription can select events indicating flows that experience
high latency. In this application, packet subscriptions perform
the work normally done by Kafka and Spark.

3) Identifier Based Routing: As mentioned in Section I,
to address networking challenges exposed by cloud computing
deployments with containerized services, several web-service
companies have deployed identifier-based routing, such as ILA
at Facebook [5]. ILA is attractive for brownfield deployments,
as it does not require a custom packet header; the service
identifier is stored in the destination address field of the
IPv6 header. By decoupling the service identifier from the
service locator, services can migrate without requiring changes
(or notifying) clients that wish to use the service. This can
be useful for load balancing, where the client does not need
to contact a specific machine, but any machine providing the
service.

We used packet subscriptions to implement an ILA identifier
based routing scheme that enables communication with a web
service that migrates between servers. Instead of contacting
the service using a physical address, the client makes a request
by specifying a service identifier. The server running the web
service subscribes to packets matching the identifier. When the
service migrates to another server, the subscription is updated.

4) Video Streaming: Video streaming is a powerful use case
for pub/sub communication, since there is a single publisher
and an unknown number of subscribers. Because many sub-
scribers want the same content, network bandwidth can be
reduced by caching copies in the network.

Prior work on Information Centric Networking (ICN) made
this same observation, and several systems have implemented
some combination of pub/sub communication and in-network
caching [43], [44]. Notably, Cisco has recently developed
an ICN-style network architecture to address the problem of
streaming to clients in unknown locations in 5G networks [45].
Their system, named hybrid ICN (hICN) [46] embeds a
content identifier in an IP address, allowing content to be
routed in a heterogeneous (hybrid) network of standard L2
hardware switches and software-based hICN forwarders. The
hICN forwarders serve as content caches. While the caches
can reduce latency and improve bandwidth utilization, they are
only effective for “hot” content that is likely to reside in the
cache. If there are many cache misses, then the software-based
forwarder can become a bottleneck.

The design of the system could be improved if packets were
only sent to a forwarder if a cache hit were likely. We used
Camus to implement this improved design. We wrote Camus
subscription filters that refer to meter state and content identi-
fier. The filters only route packets to the software forwarders if
the meter rate exceeds a threshold (i.e., a cache hit is likely).
Otherwise, packets are sent upstream through other hardware
switches, on the path to the original producer of the content.

5) DNS Resolver: We implemented a DNS resolver that
maps a host name to an IP address. This application differs
from the others, in that we extended the subscriptions with
a custom action. In Section I, we discussed the fwd action
that is built into the compiler. For the resolver, we added a
new action, answerDNS(ip), that resolves a query to an
IP address; crafts a DNS response; and sends it back to the
source. A DNS entry can be added with a single subscription
rule. For example,

name == h105: answerDNS(10.0.0.105)

would reply with a DNS AA (Authoritative Answer) mes-
sage containing 10.0.0.105 to DNS queries for host
105 (h105). If the switch does not have a subscription for
a DNS entry, the default action is to forward the request
to a DNS server. In this application, packet subscriptions
are essentially used to implement a caching layer to reduce
response latency and alleviate load on DNS servers.

6) Motor Highway Monitoring: Partially inspired by the
classic stream processing benchmark, Linear Road [47],
we implemented an Internet of Things (IoT) Motor Highway
Monitoring application. The application is used to detect cars
that exceed the speed limit for a given highway. We assume
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that each car is equipped with a mote that emits 10 position
report packets per second. The position report packet contains
a fixed-width header indicating the car’s identifier, current
coordinates and speed. These packets are forwarded through
a switch which is connected to a monitoring server. The
application detects cars travelling at over 55 mph within areas
defined by lat/long coordinate ranges. For example, the rule

x > 10 ∧ x < 20 ∧ y > 30 ∧ y < 40
∧ spd > 55: fwd(1);

would forward a position report to a monitor server on port 1 if
the car is speeding in the region bounded by the lat/long range
of 30-40 and 10-20, respectively. Although the subscription
predicates on many fields, it can be evaluated in a single
pipeline pass, without recirculation.

7) Publish/Subscribe: Many application-level middleware
messaging services provide pub/sub communication, such as
Kafka [9], ActiveMQ [48], and Siena [49]. We implemented
an API-compatible replacement for the Apache Kafka message
queue [9]. Instead of sending a message to the Kafka server,
the publisher sends the message to our switch, which routes
the message to the subscribers. Although our Kafka shim does
not provide the same features as Kafka (e.g., persistence),
it can support higher throughputs, reducing the number of
Kafka servers that would otherwise be necessary. We note that
our implementation is limited to message sizes of 512 bytes.
Sending messages larger than the MTU would require split-
ting the message between packets. However, 512 bytes is
the typical size of a JSON message [50], and fits within
the MTU.

8) Traditional IP: To demonstrate that packet subscriptions
generalize traditional forwarding rules, we implemented IP.
Each host is assigned an IP addresses, and the switches
forward packets toward their destinations.

9) Limitations and Scope: The applications we imple-
mented are intended to demonstrate the expressiveness of
packet subscriptions. Later we also compare their performance
with equivalent server-based applications, as in the case of
Apache Kafka. However, this comparison is slightly unfair,
since the applications written with packet subscriptions do not
provide all the features of software-based pub/sub systems
(e.g., replication, fault-tolerant delivery and logging). Still,
the comparison is appropriate for many application scenar-
ios in which providing timely data is more important than
offering availability of old data. For example, it is common
for real-time data analytic systems to disable replication for
fault-tolerance to increase performance.

D. Q2: Architecture Practicality

To evaluate the practicality of the Camus architecture,
we focused on the following questions: (i) Can multiple appli-
cations using packet subscriptions co-exist? (ii) Can packet
subscriptions co-exist with traditional IP traffic? (iii) Can
packet subscriptions generalize traditional IP traffic? For all
the experiments in this section, the main result is “it works”—
unexciting, but exactly what we’d hope to see.

1) Multiple Applications: Packet subscriptions for multiple
applications can co-exist on the same switch. Assuming that

their rules fit within the switch memory and their aggregate
throughput does not exceed the bandwidth supported by the
switch, there is no additional latency to that typically experi-
enced in the network (e.g., because of queueing).

To demonstrate that applications can co-exist, we deployed
both the ITCH and INT applications on the same switch.
We used this switch in a topology with three servers: the
first server published packets for both applications, and the
other two processed either ITCH or INT packets. Both appli-
cations ran simultaneously without problems in the same
network.

2) Co-Existence with IP: To demonstrate the feasibility of
a brownfield deployment, we implemented a basic L2/L3 IP
switch, and used it as ToR switch for servers communicating
with Kafka. Then, we extended the switch pipelines for two
packet subscription applications, ITCH and INT. We measured
the Kafka publisher throughput for both switch configurations.
In the Camus configuration, we introduced some INT and
ITCH traffic and observed that the Kafka traffic, using tra-
ditional IPv4 forwarding, was not impacted.

3) Generalizing IP: To demonstrate that packet subscrip-
tions generalize traditional forwarding rules, we used them
to implement traditional IP forwarding. We compiled Camus
rules to forward IP packets. We deployed this on a switch
connecting a cluster of four servers running an unmodified
Kafka application. The application worked as expected.

E. Q3: Application Performance

To evaluate the impact on application performance, we com-
pared the in-network applications to traditional software based
alternatives in terms of both latency and throughput.

1) Market Data Filter: We evaluated latency in the context
of processing ITCH messages. In the experiment, a publisher
sends a feed of ITCH messages to a subscriber that filters
the feed for add-order messages with stock symbol GOOGL.
We measured the end-to-end latency, between publication and
delivery.

The publisher and subscriber (both using DPDK) are collo-
cated on a server for accurate timestamping, and communicate
using separate NICs connected via the switch. We ran the
experiment in two configurations: in the baseline configu-
ration, the subscriber performs the filtering; in the second
configuration, the filtering is done on the switch with Camus.
We used two workloads: a Nasdaq trace from August 30th
2017 and a synthetic feed with multiple ITCH messages per
packet (Zipf distribution). The number of messages of interest
(i.e. for GOOGL) is 0.5% of the Nasdaq trace, and 5% of the
synthetic feed. We sent the feeds at 8.25 Mpps, which is 90%
of the maximum filtering throughput of the subscriber. To be
clear, Camus can run at a much higher throughput, but we
slowed down the feed rate for the subscriber.

Figure 8 shows the latency CDF for both workloads. For
the Nasdaq trace, all messages arrived within 50us with
Camus, compared to 300us for the baseline. For the synthetic
workload, 99.5% of the messages arrived within 20us with
Camus, compared to 96.5% with the baseline. The synthetic
feed has multiple messages per packet, which requires packet
replication within the switch to split the packet; nevertheless,
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Fig. 8. ITCH experiments with two different workloads.

Fig. 9. Filtering INT packets from a 100G link.

the latency is still significantly lower than that of the baseline.
Overall, filtering messages on the switch with Camus reduces
the tail latency, allowing applications to meet their latency
requirements under high throughput.

2) Network Telemetry Analytics: For the INT filtering appli-
cation, we compared with a C program running in userspace
and a C program using DPDK, both running on a commodity
server. To generate a high-bandwidth packet stream, as one
would expect when collecting data from a realistic datacenter,
we used a switch to generate a stream of INT packets on a
100G link. We used filters that match less than 1% of the
packets. The filters check that the INT packet passed through
a switch with a latency above a threshold, for example:

int.switch_id = 2 and int.hop_latency> 100

Figure 9 shows the results. DPDK has better performance
than the plain C program, but is fundamentally limited by the
CPU clock speed: at 1.6GHz, spending about 100 instructions
per packet, DPDK can process 16 Mpps. Camus, on the
other hand, processes the whole 100G stream at line rate.
Moreover, we found that the software based filtering does
not scale with the number of filters: the latency for DPDK
drastically increases after 10K filters. Camus installs the filters
in hardware memory, so it has low latency, regardless of the
number of filters.

3) Streaming Video: There are two benefits of our approach:
it reduces the load on the hICN forwarder and reduces the
latency for “cold” content by bypassing the cache. To evaluate
this claim, we deployed the VPP/DPDK [51] implementation
of hICN with the topology in Figure 10. On two clients we ran
the hICN performance measurement tool, hiperf, to stream
content for the same identifier, while in parallel another
client pulled content for many different identifiers, which are
unlikely to be cached. First we ran a baseline IPv6 setup
where all the requests from the clients pass through the hICN

Fig. 10. Topology for hICN video streaming experiment.

Fig. 11. Lower tail latency for uncached content in hICN.

Fig. 12. Compiler BDD memory efficiency.

forwarder, which processes packets at about 3.5 Gbps. Then,
we ran with the Camus stateful predicates, which only sends
“hot” requests to the forwarder. Figure 11 shows the latency
for receiving data that is unlikely to be cached. Camus reduces
the 95th percentile latency by 21%, because it detects requests
for uncached data, and thus avoids the latency of the forwarder.
Furthermore, the reduced load on the hICN forwarder allows
it to stream to the other clients at a throughput 3% higher than
the baseline.

F. Q4: Efficiency of Forwarding

We evaluate the efficiency of forwarding with Camus in
terms of performance and memory usage.

1) Performance: Camus can support the full switch band-
width of 6.5Tbps. The latency of the pipeline, which depends
on the application, is less than 1μs.

2) Memory: We compare the memory usage of our compiler
to a baseline of naïvely representing all the filters in one
big table (see Section V). One big table has entries for all
permutations of overlapping queries; workloads with similar
queries cause an explosion in the table size. We chose this
baseline because it is an intuitive representation of query
forwarding logic. We generated workloads using the Siena
Synthetic Benchmark Generator [52], which has been used
to evaluate prior work in pub/sub systems [49]. Figure 12
shows the total size of the tables (number of entries) as we
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Fig. 13. Switch memory usage for two hierarchical topology routing policies and approximation.

TABLE I

SWITCH RESOURCE USAGE FOR THREE APPLICATIONS

vary: (a) the number of subscriptions; and (b) the selectiveness
of subscriptions (number of predicates).

Given the low growth rate of table entries as workloads
become more complex, the experiments show that Camus
uses available space effectively, especially compared to the
baseline. More selective subscription conditions (i.e. more
predicates per filter) require fewer entries, because they result
in fewer paths in the BDD.

To understand the memory implications for applications,
we measured the switch resource usage for three applications
with different filter sizes. For ITCH we generated filters of the
form “stock == S ∧ price > P: fwd(H)”, where S
is one of a 100 stock symbols, P is in the range (0, 1000)
and H is one of 200 end-hosts. For INT we generated
the filters described in Section VIII-III with 100 switches
and 1000 hop_latency ranges. For hICN (described in
Section VIII-III) we used 1M unique content identifiers.
Table I shows that these applications are well within the
limits of the switch resources. In fact, these applications
can be deployed together, or with other standard network
functionality. ITCH is the only application that makes heavy
use of multicast groups, which is because many end-hosts have
overlapping filters.

G. Q5: Efficiency of Routing

To compare the routing efficiency for different design deci-
sions, we measured both memory usage (in hierarchical and
general topologies) and compile time.

1) Memory Usage in Hierarchical Topologies: We compare
the switch memory usage at various layers of a Fat Tree topol-
ogy for different routing policies and with the approximation
described in Section IV. We used Mininet [53] to emulate the
topology depicted in Figure 3 with 20 switches and 16 hosts
that publish and subscribe to an ITCH feed. The filters were
generated with the synthetic benchmark generator described
in the previous section.

Figures 13a and 13b show the memory usage for the two
policies with an increasing number of filters, where each filter

checks three variables. With the MR policy, the Agg and ToR
layer only need to store southbound filters, which uses less
memory. On the other hand, the TR policy requires storing
the filters from the whole network. The TR policy uses more
memory but can utilize the bandwidth more efficiently which
results in less congested links in the network.

Figures 13a and 13c show that memory usage is reduced
by discretizing the filters while aggregating filters at different
layers in the network. Although this approximation reduces
both compile time and memory usage, it causes extra traffic
in the network. Figure 13d illustrates the correlation between
the discretization unit (α) and the percentage of extra traffic
forwarded in the core layer of the network.

2) Memory Usage in General Topologies: We compare the
memory usage for the two tree-construction algorithms (MST
and MST++) described in Section IV-II. We use two network
graphs from the SNAP dataset [54]: CAIDA is an AS-level
graph derived in 2007 and consisting of 26475 nodes and
106762 edges; AS-733 is another, smaller AS-level graph
derived in 2000 and consisting of 6474 nodes and 13233 edges.
For each graph, we generate two spanning trees, one using the
MST algorithm, and one using the MST++ algorithm, and we
carry out a series of experiments on those four trees.

We assign packet subscription rules to some randomly
selected nodes. We select increasing numbers of nodes to
obtain an increasing total number of subscriptions. Each
selected node gets either one or ten rules depending on the
experiment. This is intended to test scenarios with more
distributed or centralized applications, respectively. Rules are
based on two variables in all the experiments. After assigning
subscription rules to switches, and referring to one of the
four trees, we compute and assign forwarding rules to all
the switches in the network as described in Section IV-II.
Finally, we run the Camus compiler for each switch, and
record the maximal number of actual table entries produced by
the compiler for any switch. For each network graph and tree,
we run repeated trials for this experiment (more than ten) for
each X-axis value, and plot the median of the maxima obtained
in each trial.

Figure 15 shows the results of this evaluation. The results
for the MST algorithm serve as a baseline and already
demonstrate that routing on general topologies is feasible
even without specific optimizations. The results for the
MST++ algorithm show that Camus admits to specific and
effective optimizations.

3) Dynamic Reconfiguration: When subscriptions change,
or if there is a change in network topology (e.g., caused by
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Fig. 14. Compile time for two routing policies.

Fig. 15. Comparison of switch memory usage for tree selection algorithms
in two general topologies from the SNAP dataset.

a link or switch failure), the runtime table entries need to
be recompiled. We evaluate how the compile time of runtime
table entries is affected by the number of subscriptions and
the number of variables each subscription contains. Figure 14a
shows the time to recompile the BDD tables for the MR policy
with α = 10. These results are similar for TR (Figure 14b) and
are two orders of magnitude faster than without approximation
(i.e. α = 1). The bottleneck is compiling the ToR layer, since
it stores all the original (i.e. unapproximated) subscriptions.
Whereas the MR policy only needs to recompile entries for
8 out of the 20 switches, the TR policy must recompile entries
for all switches. Moreover, the compile time is negligible for
1 to 2 variables, which is a reasonable number of variables
for applications like INT and ITCH.

IX. RELATED WORK

Packet subscriptions can be seen as a domain-specific lan-
guage for networking. Another perspective is to see packet
subscriptions as a network-level implementation of pub-
lish/subscribe messaging system.

A. Network Programming Languages

Several languages support the configuration of networks of
programmable switches, including Frenetic [55], Pyretic [56],
Merlin [57], and NetKAT [58]. Packet Subscriptions differs
from this work in that it is more than a control-plane language
for network designers or administrators. In particular, it pro-
vides stateful filtering rules that realize a form of in-network
processing, and therefore amount to data-plane programs.
The Marple [59] language also evaluates queries in-network,
but for the domain-specific application of network telemetry.
The packet subscription compilation algorithm is similar to
the FDD compilation algorithm by Smolka et al. [31].

B. Publish/Subscribe Messaging Systems

Packet subscriptions are comparable to application-
level middleware messaging services, such as Kafka,

ActiveMQ [48], and Siena [49]. Eugster et al. provide a
comprehensive survey of pub/sub systems [11]. Packet sub-
scriptions are also comparable to the large body of prior
work on information-centric networking (ICN) [60]–[62]. ICN
is founded on the idea of addressing data packets using
symbolic names rather than network addresses. Prior work
reports throughput limits that are well below those of packet
subscriptions. Also, notice that these systems implement a
stateless prefix matching, which is a problem that is signif-
icantly simpler than the content-based and stateful filtering of
packet subscriptions.

X. CONCLUSION

Today, networks provide a lower level of abstraction than
what is expected by modern distributed applications. This
paper argues that the emergence of programmable data
planes has created an opportunity to resolve this incongruity,
by allowing the network to offer a more expressive interface.

The core technical contributions of this paper include the
design of an expressive filter language that generalizes tradi-
tional forwarding rules; a set of algorithms for routing with
packet subscriptions; and techniques for compiling complex
filters to reconfigurable network hardware using BDDs.

These techniques are widely applicable to a range of net-
work services. As a demonstration, we have used our prototype
controller and compiler to build a diverse set of applications,
including a financial application for filtering market feeds;
detecting network events using INT; and stateful forwarding
of hICN streams. These applications demonstrate predictable,
low-latency packet processing using the full switch bandwidth.
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