
Smoothed Analysis: An Attempt to Explain the Behavior of
Algorithms in Practice ∗

Daniel A. Spielman
Department of Computer Science

Yale University
spielman@cs.yale.edu

Shang-Hua Teng
†

Department of Computer Science
Boston University

shanghua.teng@gmail.com

ABSTRACT
Many algorithms and heuristics work well on real data, de-
spite having poor complexity under the standard worst-case
measure. Smoothed analysis [36] is a step towards a the-
ory that explains the behavior of algorithms in practice. It
is based on the assumption that inputs to algorithms are
subject to random perturbation and modification in their
formation. A concrete example of such a smoothed analysis
is a proof that the simplex algorithm for linear programming
usually runs in polynomial time, when its input is subject
to modeling or measurement noise.

1. MODELING REAL DATA

“My experiences also strongly confirmed my
previous opinion that the best theory is inspired
by practice and the best practice is inspired by
theory. ”

[Donald E. Knuth: “Theory and Practice”,
Theoretical Computer Science, 90 (1), 1–15, 1991.]

Algorithms are high-level descriptions of how computa-
tional tasks are performed. Engineers and experimentalists
design and implement algorithms, and generally consider
them a success if they work in practice. However, an al-
gorithm that works well in one practical domain might per-
form poorly in another. Theorists also design and analyze
algorithms, with the goal of providing provable guarantees
about their performance. The traditional goal of theoretical
computer science is to prove that an algorithm performs well

∗This material is based upon work supported by the Na-
tional Science Foundation under Grants No. CCR-0325630
and CCF-0707522. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation.
Because of CACM’s strict constraints on bibliography, we
have to cut down the citations in this writing. We will post
a version of the article with more complete bibliograph on
our webpage.
†Affliation after the summer of 2009: Department of Com-
puter Science, University of Southern California.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

in the worst case: if one can prove that an algorithm per-
forms well in the worst case, then one can be confident that
it will work well in every domain. However, there are many
algorithms that work well in practice that do not work well
in the worst case. Smoothed analysis provides a theoretical
framework for explaining why some of these algorithms do
work well in practice.

The performance of an algorithm is usually measured by
its running time, expressed as a function of the input size
of the problem it solves. The performance profiles of al-
gorithms across the landscape of input instances can differ
greatly and can be quite irregular. Some algorithms run
in time linear in the input size on all instances, some take
quadratic or higher order polynomial time, while some may
take an exponential amount of time on some instances.

Traditionally, the complexity of an algorithm is measured
by its worst-case performance. If a single input instance
triggers an exponential run time, the algorithm is called an
exponential-time algorithm. A polynomial-time algorithm
is one that takes polynomial time on all instances. While
polynomial time algorithms are usually viewed as being effi-
cient, we clearly prefer those whose run time is a polynomial
of low degree, especially those that run in nearly linear time.

It would be wonderful if every algorithm that ran quickly
in practice was a polynomial-time algorithm. As this is not
always the case, the worst-case framework is often the source
of discrepancy between the theoretical evaluation of an al-
gorithm and its practical performance.

It is commonly believed that practical inputs are usually
more favorable than worst-case instances. For example, it
is known that the special case of the Knapsack problem in
which one must determine whether a set of n numbers can
be divided into two groups of equal sum does not have a
polynomial-time algorithm, unless NP is equal to P. Shortly
before he passed away, Tim Russert of the NBC’s “Meet
the Press,” commented that the 2008 election could end in
a tie between the Democratic and the Republican candi-
dates. In other words, he solved a 51 item Knapsack prob-
lem1 by hand within a reasonable amount of time, and most

1In presidential elections in the United States, each of the
50 states and the District of Columbia is allocated a num-
ber of electors. All but the states of Maine and Nebraska
use winner-take-all system, with the candidate winning the
majority votes in each state being awarded all of that states
electors. The winner of the election is the candidate who is
awarded the most electors. Due to the exceptional behavior
of Maine and Nebraska, the problem of whether the gen-
eral election could end with a tie is not a perfect Knapsack

likely without using the pseudo-polynomial-time dynamic-
programming algorithm for Knapsack!

In our field, the simplex algorithm is the classic example
of an algorithm that is known to perform well in practice
but has poor worst-case complexity. The simplex algorithm
solves a linear program, for example, of the form,

max cT x subject to Ax ≤ b, (1)

where A is an m×n matrix, b is an m-place vector, and c is
an n-place vector. In the worst case, the simplex algorithm
takes exponential time [25]. Developing rigorous mathemat-
ical theories that explain the observed performance of prac-
tical algorithms and heuristics has become an increasingly
important task in Theoretical Computer Science. However,
modeling observed data and practical problem instances is
a challenging task as insightfully pointed out in the 1999
“Challenges for Theory of Computing” Report for an NSF-
Sponsored Workshop on Research in Theoretical Computer
Science2.

“While theoretical work on models of com-
putation and methods for analyzing algorithms
has had enormous payoff, we are not done. In
many situations, simple algorithms do well. Take
for example the Simplex algorithm for linear pro-
gramming, or the success of simulated annealing
of certain supposedly intractable problems. We
don’t understand why! It is apparent that worst-
case analysis does not provide useful insights on
the performance of algorithms and heuristics and
our models of computation need to be further de-
veloped and refined. Theoreticians are investing
increasingly in careful experimental work leading
to identification of important new questions in
algorithms area. Developing means for predict-
ing the performance of algorithms and heuristics
on real data and on real computers is a grand
challenge in algorithms”.

Needless to say, there are a multitude of algorithms be-
yond simplex and simulated annealing whose performance
in practice is not well-explained by worst-case analysis. We
hope that theoretical explanations will be found for the suc-
cess in practice of many of these algorithms, and that these
theories will catalyze better algorithm design.

2. THE BEHAVIOR OF ALGORITHMS
When A is an algorithm for solving problem P we let

TA[x] denote the running time of algorithm A on an input
instance x. If the input domain Ω has only one input in-
stance x, then we can use the instance-based measure TA1 [x]
and TA2 [x] to decide which of the two algorithms A1 and A2

more efficiently solves P . If Ω has two instances x and y,
then the instance-based measure of an algorithm A defines a
two dimensional vector (TA[x], TA[y]). It could be the case
that TA1 [x] < TA2 [x] but TA1 [y] > TA2 [y]. Then, strictly
speaking, these two algorithms are not comparable. Usually,
the input domain is much more complex, both in theory and
in practice. The instance-based complexity measure TA[·] de-
fines an |Ω| dimensional vector when Ω is finite. In general,

problem. But one can still efficiently formulate it as one.
2Available at http://sigact.acm.org/

it can be viewed as a function from Ω to R1
+. But, it is

unwieldy. To compare two algorithms, we require a more
concise complexity measure.

An input domain Ω is usually viewed as the union of a
family of subdomains {Ω1, . . . , Ωn, . . .}, where Ωn represents
all instances in Ω of size n. For example, in sorting, Ωn is
the set of all tuples of n elements; in graph algorithms, Ωn

is the set of all graphs with n vertices; and in computational
geometry, we often have Ωn ∈ Rn. In order to succinctly
express the performance of an algorithm A, for each Ωn

one defines scalar TA(n) that summarizes the instance-based
complexity measure, TA[·], of A over Ωn. One often further
simplifies this expression by using big-O or big-Θ notation
to express TA(n) asymptotically.

2.1 Traditional Analyses
It is understandable that different approaches to summa-

rizing the performance of an algorithm over Ωn can lead to
very different evaluations of that algorithm. In Theoretical
Computer Science, the most commonly used measures are
the worst-case measure and the average-case measures.

The worst-case measure is defined as

WCA(n) = max
x∈Ωn

TA[x].

The average-case measures have more parameters. In each
average-case measure, one first determines a distribution
of inputs and then measures the expected performance of
an algorithm assuming inputs are drawn from this distribu-
tion. Supposing S provides a distribution over each Ωn, the
average-case measure according to S is

AveSA(n) = E
x∈SΩn

[TA[x]] ,

where we use x ∈S Ωn to indicate that x is randomly chosen
from Ωn according to distribution S.

2.2 Critique of Traditional Analyses
Low worst-case complexity is the gold standard for an

algorithm. When low, the worst-case complexity provides an
absolute guarantee on the performance of an algorithm no
matter which input it is given. Algorithms with good worst-
case performance have been developed for a great number
of problems.

However, there are many problems that need to be solved
in practice for which we do not know algorithms with good
worst-case performance. Instead, scientists and engineers
typically use heuristic algorithms to solve these problems.
Many of these algorithms work well in practice, in spite of
having a poor, sometimes exponential, worst-case running
time. Practitioners justify the use of these heuristics by ob-
serving that worst-case instances are usually not “typical”
and rarely occur in practice. The worst-case analysis can be
too pessimistic. This theory-practice gap is not limited to
heuristics with exponential complexity. Many polynomial
time algorithms, such as interior-point methods for linear
programming and the conjugate gradient algorithm for solv-
ing linear equations, are often much faster than their worst-
case bounds would suggest. In addition, heuristics are often
used to speed up the practical performance of implementa-
tions that are based on algorithms with polynomial worst-
case complexity. These heuristics might in fact worsen the
worst-case performance, or make the worst-case complexity
difficult to analyze.

Average-case analysis was introduced to overcome this dif-
ficulty. In average-case analysis, one measures the expected
running time of an algorithm on some distribution of inputs.
While one would ideally choose the distribution of inputs
that occur in practice, this is difficult as it is rare that one
can determine or cleanly express these distributions, and the
distributions can vary greatly between one application and
another. Instead, average-case analyses have employed dis-
tributions with concise mathematical descriptions, such as
Gaussian random vectors, uniform {0, 1} vectors, and Erdös-
Rényi random graphs.

The drawback of using such distributions is that the in-
puts actually encountered in practice may bear very little
resemblance to the inputs that are likely to be generated by
such distributions. For example, one can see what a random
image looks like by disconnecting most TV sets from their
antennas, at which point they display “static”. These ran-
dom images do not resemble actual television shows. More
abstractly, Erdös-Rényi random graph models are often used
in average-case analyses of graph algorithms. The Erdös-
Rényi distribution G(n, p), produces a random graph by in-
cluding every possible edge in the graph independently with
probability p. While the average degree of a graph chosen
from G(n, 6/(n − 1)), is approximately six, such a graph
will be very different from a the graph of a triangulation
of points in two dimensions, which will also have average
degree approximately six.

In fact, random objects such as random graphs and ran-
dom matrices have special properties with exponentially high
probability, and these special properties might dominate the
average-case analysis. Edelman [14] writes of random ma-
trices:

What is a mistake is to psychologically link
a random matrix with the intuitive notion of a
“typical” matrix or the vague concept of “any old
matrix.”

In contrast, we argue that “random matrices”
are very special matrices.

2.3 Smoothed Analysis: A Step towards Mod-
eling Real Data

Because of the intrinsic difficulty in defining practical dis-
tributions, we consider an alternative approach to modeling
real data. The basic idea is to identify typical properties
of practical data, define an input model that captures these
properties, and then rigorously analyze the performance of
algorithms assuming their inputs have these properties.

Smoothed analysis is a step in this direction. It is moti-
vated by the observation that practical data are often sub-
ject to some small degree of random noise. For example,

• in industrial optimization and economic prediction, the
input parameters could be obtained by physical mea-
surements, and measurements usually have some of low
magnitude uncertainty;

• in the social sciences, data often come from surveys in
which subjects provide integer scores in a small range
(say between 1 and 5) and select their score with some
arbitrariness;

• even in applications where inputs are discrete, there
might be randomness in the formation of inputs. For
instance, the network structure of the Internet may

very well be governed by some “blueprints” of the gov-
ernment and industrial giants, but it is still“perturbed”
by the involvements of smaller Internet Service Providers.

In these examples, the inputs usually are neither com-
pletely random nor completely arbitrary. At a high level,
each input is generated from a two-stage model: In the first
stage, an instance is generated and in the second stage, the
instance from the first stage is slightly perturbed. The per-
turbed instance is the input to the algorithm.

In smoothed analysis, we assume that an input to an al-
gorithm is subject to a slight random perturbation. The
smoothed measure of an algorithm on an input instance is
its expected performance over the perturbations of that in-
stance. We define the smoothed complexity of an algorithm
to be the maximum smoothed measure over input instances.

For concreteness, consider the case Ωn = Rn, which is a
common input domain in computational geometry, scientific
computing, and optimization. For these continuous inputs
and applications, the family of Gaussian distributions pro-
vides a natural models of noise or perturbation.

Recall that a univariate Gaussian distribution with mean
0 and standard deviation σ has density

1√
2πσ

e−x2/2σ2
.

The standard deviation measures the magnitude of the per-
turbation. A Gaussian random vector of variance σ2 cen-
tered at the origin in Ωn = Rn is a vector in which each en-
try is an independent Gaussian random variable of standard
deviation σ and mean 0. For a vector x̄ ∈ Rn, a σ-Gaussian
perturbation of x̄ is a random vector x = x̄ + g, where g
is a Gaussian random vector of variance σ2. The standard
deviation of the perturbation we apply should be related
to the norm of the vector it perturbs. For the purposes of
this paper, we relate the two by restricting the unperturbed
inputs to lie in [−1, 1]n. Other reasonable approaches are
taken elsewhere.

Definition 1 (Smoothed Complexity). Suppose A is
an algorithm with Ωn = Rn. Then, the smoothed complexity
of A with σ-Gaussian perturbations is given by

Smoothedσ
A(n) = max

x̄∈[−1,1]n
E
g

[TA (x̄ + g)] ,

where g is a Gaussian random vector of variance σ2.

In this definition, the “original” input x̄ is perturbed to
obtain the input x̄ + g, which is then fed to the algorithm.
For each original input, this measures the expected running
time of algorithm A on random perturbations of that input.
The maximum out front tells us to measure the smoothed
analysis by the expectation under the worst possible original
input.

The smoothed complexity of an algorithm measures the
performance of the algorithm both in terms of the input size
n and in terms of the magnitude σ of the perturbation. By
varying σ between zero and infinity, one can use smoothed
analysis to interpolate between worst-case and average-case
analysis. When σ = 0, one recovers the ordinary worst-
case analysis. As σ grows large, the random perturbation
g dominates the original x̄, and one obtains an average-
case analysis. We are most interested in the situtation in
which σ is small relative to ‖x̄‖, in which case x̄+g may be

interpreted as a slight perturbation of x̄. The dependence
on the magnitude σ is essential and much of the work in
smoothed analysis demonstrates that noises often make a
problem easier to solve.

Definition 2. A has polynomial smoothed complex-
ity if there exist positive constants n0, σ0, c, k1 and k2 such
that for all n ≥ n0 and 0 ≤ σ ≤ σ0,

Smoothedσ
A(n) ≤ c · σ−k2 · nk1 , (2)

From Markov’s inequality, we know that if an algorithm
A has smoothed complexity T (n, σ), then

max
x̄∈[−1,1]n

Prg
ˆ
TA(x̄ + g) ≤ δ−1T (n, σ)

˜
≥ 1− δ. (3)

Thus, if A has polynomial smoothed complexity, then for
any x̄, with probability at least (1 − δ), A can solve a ran-
dom perturbation of x̄ in time polynomial in n, 1/σ, and
1/δ. However, the probabilistic upper bound given in (3)
does not necessarily imply that the smoothed complexity of
A is O(T (n, σ)). Blum and Dunagan [6] and subsequently
Beier and Vöcking [5] introduced a relaxation of polynomial
smoothed complexity.

Definition 3. A has probably polynomial smoothed
complexity if there exist constants n0, σ0, c, and α, such
that for all n ≥ n0 and 0 ≤ σ ≤ σ0,

max
x̄∈[−1,1]n

E
g

[TA (x̄ + g)α] ≤ c · σ−1 · n. (4)

They show that some algorithms have probably polyno-
mial smoothed complexity, in spite of the fact that their
smoothed complexity according to Definition 1 is unbounded.

3. EXAMPLES OF SMOOTHED ANALYSIS
In this section, we give a few examples of smoothed anal-

ysis. We organize them in five categories: mathematical
programming, machine learning, numerical analysis, discrete
mathematics, and combinatorial optimization. For each ex-
ample, we will give the definition of the problem, state the
worst-case complexity, explain the perturbation model, and
state the smoothed complexity under the perturbation model.

3.1 Mathematical Programming
The typical problem in Mathematical programming is the

optimization of an objective function subject to a set of
constraints. Because of its importance to economics, man-
agement science, industry and military planning, many op-
timization algorithms and heuristics have been developed,
implemented and applied to practical problems. Thus, this
field provides a great collection of algorithms for smoothed
analysis.

Linear Programming
Linear programming is the most fundamental optimization
problem. A typical linear program is given in Eqn. (1). The
most commonly used linear programming algorithms are the
simplex algorithm [12] and the interior-point algorithms.

The simplex algorithm, first developed by Dantzig in 1951
[12], is a family of iterative algorithms. Most of them are
two-phase algorithms: Phase I determines whether a given
linear program is infeasible, unbounded in the objective di-
rection, or feasible with a bounded solution, in which case,

a vertex v0 of the feasible region is also computed. Phase
II is iterative: in the ith iteration, the algorithm finds a
neighboring vertex vi of vi−1 with better objective value or
terminates by returning vi−1 when no such neighboring ver-
tex exists. The simplex algorithms differ in their pivot rules,
which determine which vertex vi to choose when there are
multiple choices. Several pivoting rules have been proposed
However, almost all existing pivot rules are known to have
exponential worst-case complexity [25].

Spielman and Teng [36] considered the smoothed complex-
ity of the simplex algorithm with the shadow-vertex pivot
rule, developed by Gass and Saaty [18]. They used Gaus-
sian perturbations to model noise in the input data and
proved that the smoothed complexity of this algorithm is
polynomial. Vershynin [38] improved their result to obtain
a smoothed complexity of

O
`
max

`
n5 log2 m, n9 log4 n, n3σ−4´´

.

See [13, 6] for smoothed analyses of other linear program-
ming algorithms such as the interior-point algorithms and
the perceptron algorithm.

Quasi-Concave Minimization
Another fundamental optimization problem is quasi-concave
minimization. Recall that a function f : Rn → R is quasi-
concave if all of its upper level sets Lγ = {x|f(x) ≥ γ}
are convex. In quasi-concave minimization, one is asked to
find the minimum of a quasi-concave function subject to a
set of linear constraints. Even when restricted to concave
quadratic functions over the hypercube, concave minimiza-
tion is NP-hard.

In applicationbs such as stochastic and multi-objective op-
timization, one often deals with data from low-dimensional
subspaces. In other words, one needs to solve a quasi-
concave minimization problem with a low-rank quasi-concave
function [23]. Recall that a function f : Rn → R has rank k
if it can be written in the form

f(x) = g(aT
1 x, aT

2 x, . . . , aT
k x),

for a function g : Rk → R and linearly independent vectors
a1, a2, . . . , ak.

Kelner and Nikolova [23] proved that, under some mild
assumptions on the feasible convex region, if k is a constant
then the smoothed complexity of quasi-concave minimiza-
tion is polynomial when f is perturbed by noise. Key to
their analysis is a smoothed bound on the size of the k-
dimensional shadow of the high-dimensional polytope that
defines the feasible convex region. There result is a non-
trivial extension of the analysis of 2-dimensional shadows of
[36, 24].

3.2 Machine Learning
Machine Learning provides many natural problems for

smoothed analysis. The field has many heursitics that work
in practice, but not in the worst case, and the data for most
machine learning problems is inherently noisy.

K-means
One of the fundamental problems in Machine Learning is
that of k-means clustering: the partitioning of a set of d-
dimensional vectors Q = {q1, . . . , qn} into k clusters {Q1, . . . , Qk}

so that the intra-cluster variance

V =

kX
i=1

X
qj∈Qi

‖qj − µ(Qi)‖2 ,

is minimized, where µ(Qi) =
“P

qj∈Qi
qj

”
/ |Qi| is the cen-

troid of Qi.
One of the most widely used clustering algorithms is Lloyd’s

algorithm [27]. It first chooses an arbitrary set of k centers
and then uses the Voronoi diagram of these centers to parti-
tion Q into k clusters. It then repeats the following process
until it stabilizes: use the centroids of the current clusters
as the new centers, and then re-partition Q accordingly.

Two important questions about Lloyd’s algorithm are how
many iterations its takes to converge, and how close to an op-
timal solution does it find. Arthur and Vassilvitskii proved

that in the worst-case, Lloyd’s algorithm requires 2Ω(
√

n)

iterations to converge [2]. Fix: Focusing on the itera-
tion complexity, Arthur, Manthey, and Röglin [10] recently
settled an early conjecture of Arthur and Vassilvitskii by
showing that Llyod’s algorithm has polynomial smoothed
complexity.

Perceptrons, Margins and Support Vector Machines
Blum and Dunagan’s analysis of the perceptron algorithm
[6] for linear programming implicitly contains results of in-
terest in Machine learning. The ordinary perceptron al-
gorithm solves a fundamental problem in Machine Learn-
ing: given a collection of points x1, . . . , xn ∈ Rd and labels
b1, . . . , bn ∈ {±1}n, find a hyperplane separating the pos-
itively labeled examples from the negatively labeled ones,
or determine that no such plane exists. Under a smoothed
model in which the points x1, . . . , xn are subject to a σ-
Gaussian perturbation, Blum and Dunagan show that the
perceptron algorithm has probably polynomial smoothed
complexity, with exponent α = 1. Their proof follows from
a demonstration that if the positive points can be separated
from the negative points, then they can probably be sepa-
rated by a large margin. It is known that the perceptron
algorithm converges quickly in this case. Moreover, this
margin is exactly what is maximized by Support Vector Ma-
chines.

PAC Learning
In a recent paper, as another application of smoothed anal-
ysis in machine learning, Kalai and Teng [21] proved that
all decision trees are PAC-learnable from most product dis-
tributions. Probably approximately correct learning (PAC
learning) is a framework in machine learning introduced by
Valiant. In PAC-learning, the learner receives polynomial
number of samples and constructs in polynomial a classifier
which can predicate future sample data with a given proba-
bility of correctness.

3.3 Numerical Analysis
One of the focii of Numerical Analysis is the determinia-

tion of how much precision is required by numerical meth-
ods. For example, consider the most fundamental problem
in computational science— that of solving systems of linear
equations. Because of the round-off errors in computation, it
is crucial to know how many bits of precision a linear solver
should maintain so that its solution is meaningful.

For example, Wilkinson [40] demonstrated a family of lin-
ear systems3 of n variables and {0,−1, 1} coefficients for
which Gaussian elimination with partial pivoting — the al-
gorithm implemented by Matlab — requires n-bits of preci-
sion.

Precision Requirements of Gaussian Elimination
However, fortunately, in practice one almost always obtains
accurate answers using much less precision. In fact, high-
precision solvers are rarely used or needed. For example,
Matlab uses 64 bits.

Building on the smoothed analysis of condition numbers
(to discussed below), Sankar, Spielman, and Teng [34, 33]
proved that it is sufficient to use O(log2(n/σ)) bits of preci-
sion to run Gaussian elimination with partial pivoting when
the matrices of the linear systems are subject to σ-Gaussian
perturbations.

The Condition Number
The smoothed analysis of the condition number of a ma-
trix is a key step toward understanding the numerical preci-
sion required in practice. For a square matrix A, its condi-
tion number κ(A) is given by κ(A) = ‖A‖2

‚‚A−1
‚‚

2
where

‖A‖2 = maxx ‖Ax‖2 / ‖x‖2. The condition number of A
measures how much the solution to a system Ax = b changes
as one makes slight changes to A and b: If one solves the
linear system using fewer than log(κ(A)) bits of precision,
then one is likely to obtain a result far from a solution.

The quantity 1/
‚‚A−1

‚‚
2

= minx ‖Ax‖2 / ‖x‖2 is known
as the smallest singular value of A. Sankar, Spielman, and
Teng [34] proved the following statement: For any squared
matrix Ā in Rn×n satisfying

‚‚Ā
‚‚

2
≤
√

n, and for any x > 1,

PrA
ˆ‚‚A−1

‚‚
2
≥ x

˜
≤ 2.35

√
n

xσ
,

where A is a σ-Gaussian perturbation of Ā. Consequently,
together with an improved bound of Wschebor [41], one can
show that

Pr [κ(A) ≥ x] ≤ O

„
n log n

xσ

«
.

See [9, 13] for smoothed analysis of the condition numbers
of other problems.

3.4 Discrete Mathematics
For problems in discrete mathematics, it is more natu-

ral to use Boolean perturbations: Let x̄ = (x̄1, . . . , x̄n) ∈
{0, 1}n or {−1, 1}n: the σ-Boolean perturbation of x̄ is a
random string x = (x1, . . . , xn) ∈ {0, 1}n or {−1, 1}n, where
xi = x̄i with probability 1− σ and xi 6= x̄i with probability
σ. That is, each bit is flipped independently with probability
σ.

Believing that σ-perturbations of Boolean matrices should
behave like Gaussian perturbations of Real matrices, Spiel-
man and Teng [35] made the following conjecture:

For any n by n matrix Ā of ±1’s. Let A be a
σ-Boolean perturbation of Ā. Then

PrA
ˆ‚‚A−1

‚‚
2
≥ x

˜
≤ O

„√
n

xσ

«
3See the second line of the Matlab code at the end of Section
4 for an example.

In particular, let A be an n by n matrix of in-
dependently and uniformly chosen ±1 entries.
Then

PrA
ˆ‚‚A−1

‚‚
2
≥ x

˜
≤
√

n

x
+ αn.

This conjectured is recently proved by Vu and Tao [39]
and Rudelson and Vershynin [32].

In graph theory, σ-Boolean perturbations of a graph can
be viewed as a smoothed extension of the classic Erdös-Rényi
random graph model. The Erdös-Rényi model, denoted by
G(n, p), is a random graph in which every possible edge oc-
curs independently with probability p.Let Ḡ = (V, E) be a
graph over vertices V = {1, ..., n}. Then, the σ-perturbation
of Ḡ, which we denote by GḠ(n, σ), is a distribution of ran-
dom graphs. Clearly for p ∈ [0, 1], G(n, p) = G∅(n, p), i.e.,
the p-Boolean perturbation of the empty graph. One can
define a smoothed extension of other random graph models.
For example, for any m and G = (V, E), Bohman, Frieze
and Martin [8] define G(Ḡ, m) to be the distribution of the
random graphs (V, E∪T) where T is a set of m edges chosen
uniformly at random from the complement of E, i.e., chosen
from Ē = {(i, j) 6∈ E} .

A popular subject of study in the traditional Erdös-Rényi
model is the phenomenon of phase transition: for many
properties such as being connected or being Hamiltonian,
there is a critical p below which a graph is unlikely to have
each property and above which it probably does have the
property. Related phase transitions have also been found in
the smoothed Erdös-Rényi models GḠ(n, σ) [26, 17].

Smoothed analysis based on Boolean perturbations can
be applied to other discrete problems. For example, Feige
[16] used the following smoothed model for 3CNF formu-
las. First, an adversary picks an arbitrary formula with n
variables and m clauses. Then, the formula is perturbed
at random by flipping the polarity of each occurrence of
each variable independently with probability σ. Feige gave
a randomized polynomial time refutation algorithm for this
problem.

3.5 Combinatorial Optimization
Beier and Vöcking [5] and Röglin and Vöcking [31] con-

sidered the smoothed complexity of integer linear program-
ming. They studied programs of the form

max cT x subject to Ax ≤ b and x ∈ Dn, (5)

where A is an m× n Real matrix, b ∈ Rm, and D ⊂ Z.
Recall that ZPP denotes the class of decision problems solv-

able by a randomized algorithm that always returns the cor-
rect answer, and whose expected running time (on every in-
put) is polynomial. Beier, Röglin and Vöcking [5, 31] proved
the following statement: For any constant c, let Π be a class
of integer linear programs of form (5) with |D| = O(nc).
Then, Π has an algorithm of probably smoothed polynomial
complexity if and only if Πu ∈ ZPP, where Πu is the “unary”
representation of Π. Consequently, the 0/1-knapsack prob-
lem, the constrained shortest path problem, the constrained
minimum spanning tree problem, and the constrained mini-
mum weighted matching problem can be solved in smoothed
polynomial time in the sense according to Definition 3.
Remark: Usually by saying Π has a pseudo-polynomial time
algorithm, one means Πu ∈ P. So Πu ∈ ZPP means that Π is
solvable by a randomized pseudo-polynomial time algorithm.

We say a problem Π is strongly NP-hard if Πu is NP-hard. For
example, 0/1-integer programming with a fixed number of
constraints is in pseudo-polynomial time, while general 0/1-
integer programming is strongly NP-hard.

Smoothed analysis has been applied to several other opti-
mization problems such as local search and TSP [15], schedul-
ing [4], sorting [3], motion planing [11], superstring approx-
imation [28], multi-objective optimization [31], embedding
[1], and multidimensional packing [22].

4. DISCUSSION

4.1 Other Performance Measures
Although we normally evaluate the performance of an al-

gorithm by its running time, other performance parameters
are often important. These performance parameters include
the amount of space required, the number of bits of precision
required to achieve a given output accuracy, the number of
cache misses, the error probability of a decision algorithm,
the number of random bits needed in a randomized algo-
rithm, the number of calls to a particular subroutine, and
the number of examples needed in a learning algorithm. The
quality of an approximation algorithm could be its approx-
imation ratio; the quality of an online algorithm could be
its competitive ratio; and the parameter of a game could
be its price of anarchy or the rate of convergence of its
best-response dynamics. We anticipate future results on the
smoothed analysis of these performance measures.

4.2 Pre-cursors to Smoothed Complexity
Several previous probabilistic models have also combined

features of worst-case and average-case analyses.
Haimovich [19] considered the following probabilistic anal-

ysis: Given a linear program L = (A,b, c) as in Eqn. (1),
they defined the expected complexity of L to be the expected
complexity of the simplex algorithm when the inequality sign
of each constraint is uniformly flipped. They proved that the
expected complexity of the worst possible L is polynomial.

Blum and Spencer [7] studied the design of polynomial-
time algorithms for the semi-random model, which combines
the features of the semi-random source with the random
graph model that has a “planted solution”. This model can
be illustrated with the k-Coloring Problem: An adversary
plants a solution by partitioning the set V of n vertices into
k subsets V1, . . . , Vk. Let

F = {(u, v)|u and v are in different subsets}

be the set of potential inter-subset edges. A graph is then
constructed by the following semi-random process that per-
turbs the decisions of the adversary: In a sequential order,
the adversary decides whether to include each edge in F
in the graph, and then a semi-random process reverses the
decision with probability σ. Note that every graph gener-
ated by this semi-random process has the planted coloring:
c(v) = i for all v ∈ Vi, as both the adversary and the semi-
random process preserve this solution by only considering
edges from F .

As with the smoothed model, one can work with the semi-
random model by varying σ from 0 to 1 to interpolate be-
tween worst-case and average-case complexity for k-coloring.
In fact, the semi-random model is related with the following
perturbation model that partially preserves a particular so-
lution: Let Ḡ = (V, Ē) be a k-colorable graph. Let c : V →

{1, ..., k} be a k-coloring of Ḡ and let Vi = {v | c(v) = i}.
The model then returns a graph G = (V, E) that is a σ-
Boolean perturbation of Ḡ subject to c also being a valid
k-coloring of G. This perturbation model is equivalent to
the semi-random model with an oblivious adversary, who
simply chooses a set Ē ⊆ F , and sends the decisions that
only include edges in Ē (and hence exclude edges in F − Ē)
through the semi-random process.

4.3 Algorithm Design and Analysis for Spe-
cial Families of Inputs

Probabilistic approaches are not the only means of char-
acterize practical inputs. Much work has been spent on
designing and analyzing inputs that satisfy certain deter-
ministic but practical input conditions. We mention a few
examples that excite us.

In parallel scientific computing, one may often assume
that the input graph is a well-shaped finite element mesh.
In VLSI layout, one often only considers graphs that are
planar or nearly planar. In geometric modeling, one may
assume that there is an upper bound on the ratio among
the distances between points. In web analysis, one may as-
sume that the input graph satisfies some powerlaw degree
distribution or some small-world properties. When analyz-
ing hash functions, one may assume that the data being
hashed has some non-negligible entropy [30].

4.4 Limits of Smoothed Analysis
The goal of smoothed analysis is to explain why some

algorithms have much better performance in practice than
predicated by the traditional worst-case analysis. However,
for many problems, there may be better explanations.

For example, the worst-case complexity and the smoothed
complexity of the problem of computing a market equilib-
rium are essentially the same [20]. So far, no polynomial-
time pricing algorithm is known for general markets. On
the other hand, pricing seems to be a practically solvable
problem, as Kamal Jain put it “If a Turing machine can’t
compute then an economic system can’t compute either.”

A key step to understanding the behaviors of algorithms
in practice is the construction of analyzable models that
are able to capture some essential aspects of practical input
instances. For practical inputs, there may often be multiple
parameters that govern the process of their formation.

One way to strengthen the smoothed analysis framework
is to improve the model of the formation of input instances.
For example, if the input instances to an algorithm A come
from the output of another algorithm B, then algorithm
B, together with a model of B’s input instances, provide a
description of A’s inputs. For example, in finite-element cal-
culations, the inputs to the linear solver A are stiffness ma-
trices which are produced by a meshing algorithm B. The
meshing algorithm B, which could be a randomized algo-
rithm, generates a stiffness matrix from a geometric domain
Ω and a partial differential equation F . So, the distribution
of the stiffness matrices input to algorithm A is determined
by the distribution D of the geometric domains Ω and the
set F of partial differential equations, and the randomness
in algorithm B. If, for example, Ω̄ is the design of an ad-
vanced rocket from a set R of “blueprints” and F is from a
set F of PDEs describing physical parameters such as pres-
sure, speed, and temperature, and Ω is generated by a per-
turbation model P of the blueprints, then one may further

measure the performance of A by the smoothed value of the
quantity above:

max
F∈F,

¯Ω∈R
E

Ω←P(
¯Ω)

»
E

X←B(Ω,F)
[Q(A, X)]

–
.

In the above formulae, Ω ← P(Ω̄) denotes that Ω is ob-
tained from the perturbation of Ω̄ and X ← B(Ω, F) denotes
that X is the output of the randomized algorithm B.

4.5 Algorithm Design based on Perturbations
and Smoothed Analysis

Finally, we hope insights gained from smoothed analysis
will lead to new ideas in algorithm design. On a theoret-
ical front, Kelner and Spielman [24] exploited ideas from
the smoothed analysis of the simplex method to design a
(weakly) polynomial-time simplex method that functions by
systematically perturbing its input program. On a more
practical level, we suggest that it might be possible to solve
some problems more efficiently by perturbing their inputs.
For example, some algorithms in computational geometry
implement variable-precision arithmetic to correctly han-
dle exceptions that arise from geometric degeneracy [29].
However, degeneracies and near-degeneracies occur with ex-
ceedingly small probability under perturbations of inputs.
To prevent perturbations from changing answers, one could
employ quad-precision arithmetic, placing the perturbations
into the least-significant half of the digits.

Our smoothed analysis of Gaussian Elimination suggests
a more stable solver for linear systems: When given a linear
system Ax = b, we first use the standard Gaussian Elim-
ination with partial pivoting algorithm to solve Ax = b.
Suppose x∗ is the solution computed. If ‖b−Ax∗‖ is small
enough, then we simply return x∗. Otherwise, we can de-
termine a parameter ε and generate a new linear system
(A + εG)y = b, where G is a Gaussian matrix with mean
0 and variance 1. Instead of solving Ax = b, we solve a
perturbed linear system (A + εG)y = b. It follows from
standard analysis that if ε is sufficiently smaller than κ(A),
then the solution to the perturbed linear system is a good
approximation to the original one. One could use practical
experience or binary search to set ε.

The new algorithm has the property that its success de-
pends only on the machine precision and the condition num-
ber of A, while the original algorithm may fail due to large
growth factors. For example, the following is a segment of
Matlab code that first solves a linear system whose matrix
is the 70× 70 matrix Wilkinson designed to trip up partial
pivoting, using the Matlab linear solver. We then perturb
the system, and apply the Matlab solver again.

>> % Using the Matlab Solver

>> n = 70; A = 2*eye(n)-tril(ones(n)); A(:,n)=1;

>> b = randn(70,1); x = A\b;

>> norm(A*x-b)

>> 2.762797463910437e+004

>> % FAILED because of large growth factor

>> %Using the new solver

>> Ap = A + randn(n)/10^9; y = Ap\b;

>> norm(Ap*y-b)

>> 6.343500222435404e-015

>> norm(A*y-b)

>> 4.434147778553908e-008

Note that while the Matlab linear solver fails to find a
good solution to the linear system, our new perturbation-
based algorithm finds a good solution. While there are stan-
dard algorithms for solving linear equations that do not have
the poor worst-case performance of partial pivoting, they are
rarely used as they are less efficient.

For more examples of algorithm design inspired by smoothed
analysis and perturbation theory, see [37].

5. ACKNOWLEDGMENTS
We would like to thank Alan Edelman for suggesting the

name“Smoothed Analysis”and thank Heiko Röglin and Don
Knuth for helpful comments on this writing.

6. REFERENCES
[1] A. Andoni and R. Krauthgamer. The smoothed

complexity of edit distance. In Proceedings of ICALP,
volume 5125 of Lecture Notes in Computer Science,
pages 357–369. Springer, 2008.

[2] D. Arthur and S. Vassilvitskii. How slow is the k-mean
method? In SOCG’ 06, the 22nd Annual ACM
Symposium on Computational Geometry, pages
144–153, 2006.

[3] C. Banderier, R. Beier, and K. Mehlhorn. Smoothed
analysis of three combinatorial problems. In the 28th
International Symposium on Mathematical
Foundations of Computer Science, pages 198–207,
2003.

[4] L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela,
G. Schäfer, , and T. Vredeveld. Average case and
smoothed competitive analysis of the multi-level
feedback algorithm. In Proceedings of the 44th Annual
IEEE Symposium on Foundations of Computer
Science, page 462, 2003.

[5] R. Beier and B. Vöcking. Typical properties of
winners and losers in discrete optimization. In STOC’
04: the 36th annual ACM symposium on Theory of
computing, pages 343–352, 2004.

[6] A. Blum and J. Dunagan. Smoothed analysis of the
perceptron algorithm for linear programming. In
SODA ’02, pages 905–914, 2002.

[7] A. Blum and J. Spencer. Coloring random and
semi-random k-colorable graphs. J. Algorithms,
19(2):204–234, 1995.

[8] T. Bohman, A. Frieze, and R. Martin. How many
random edges make a dense graph hamiltonian?
Random Struct. Algorithms, 22(1):33–42, 2003.

[9] P. Bürgissera, F. Cucker, and M. Lotz. Smoothed
analysis of complex conic condition numbers. J. de
Mathématiques Pures et Appliqués, 86(4):293–309,
2006.

[10] B. Manthey D. Arthur and H. Röglin. k-means has
polynomial smoothed complexity. In to appear, 2009.

[11] V. Damerow, F. Meyer auf der Heide, H. Räcke,
Christian Scheideler, and C. Sohler. Smoothed motion
complexity. In Proc. 11th Annual European
Symposium on Algorithms, pages 161–171, 2003.

[12] G. B. Dantzig. Maximization of linear function of
variables subject to linear inequalities. In T. C.
Koopmans, editor, Activity Analysis of Production and
Allocation, pages 339–347. 1951.

[13] J. Dunagan, D. A. Spielman, and S.-H. Teng.
Smoothed analysis of Renegar’s condition number for
linear programming. Available at
http://arxiv.org/abs/cs/0302011v2, 2003.

[14] A. Edelman. Eigenvalue roulette and random test
matrices. In Marc S. Moonen, Gene H. Golub, and
Bart L. R. De Moor, editors, Linear Algebra for Large
Scale and Real-Time Applications, NATO ASI Series,
pages 365–368. 1992.

[15] M. Englert, H. Röglin, and B. Vöcking. Worst case
and probabilistic analysis of the 2-opt algorithm for
the TSP: extended abstract. In SODA’ 07: the 18th
annual ACM-SIAM symposium on Discrete
algorithms, pages 1295–1304, 2007.

[16] U. Feige. Refuting smoothed 3CNF formulas. In the
48th Annual IEEE Symposium on Foundations of
Computer Science, pages 407–417, 2007.

[17] A. Flaxman and A. M. Frieze. The diameter of
randomly perturbed digraphs and some applications..
In APPROX-RANDOM, pages 345–356, 2004.

[18] S. Gass and T. Saaty. The computational algorithm
for the parametric objective function. Naval Research
Logistics Quarterly, 2:39–45, 1955.

[19] M. Haimovich. The simplex algorithm is very good ! :
On the expected number of pivot steps and related
properties of random linear programs. Technical
report, Columbia University, April 1983.

[20] L.-S. Huang and S.-H. Teng. On the approximation
and smoothed complexity of Leontief market
equilibria. In Frontiers of Algorithms Workshop, pages
96–107, 2007.

[21] A. T. Kalai and S.-H. Teng. Decison trees are
pac-learnable from most product distributions: A
smoothed analysis. MSR-NE, submitted, 2008.

[22] D. Karger and K. Onak. Polynomial approximation
schemes for smoothed and random instances of
multidimensional packing problems. In SODA’07: the
18th annual ACM-SIAM symposium on Discrete
algorithms, pages 1207–1216, 2007.

[23] J. A. Kelner and E. Nikolova. On the hardness and
smoothed complexity of quasi-concave minimization.
In the 48th Annual IEEE Symposium on Foundations
of Computer Science, pages 472–482, 2007.

[24] J. A. Kelner and D. A. Spielman. A randomized
polynomial-time simplex algorithm for linear
programming. In the 38th annual ACM symposium on
Theory of computing, pages 51–60, 2006.

[25] V. Klee and G. J. Minty. How good is the simplex
algorithm? In Shisha, O., editor, Inequalities – III,
pages 159–175. Academic Press, 1972.

[26] M. Krivelevich, B. Sudakov, and P. Tetali. On
smoothed analysis in dense graphs and formulas.
Random Structures and Algorithms, 29:180–193, 2005.

[27] S. Lloyd. Least squares quantization in pcm. IEEE
Trans. on Information Theory, 28(2):129–136, 1982.

[28] B. Ma. Why greed works for shortest common
superstring problem. In Combinatorial Pattern
Matching, LNCS, Springer.

[29] K. Mehlhorn and S. Näher. The LEDA Platform of
Combinatorial and Geometric Computing. Cambridge
University Press, New York, 1999.

[30] M. Mitzenmacher and S. Vadhan. Why simple hash
functions work: exploiting the entropy in a data
stream. In SODA ’08: Proceedings of the nineteenth
annual ACM-SIAM symposium on Discrete
algorithms, pages 746–755, 2008.

[31] H. Röglin and B. Vöcking. Smoothed analysis of
integer programming. In Michael Junger and Volker
Kaibel, editors, Proc. of the 11th Int.Conf. on Integer
Programming and Combinatorial Optimization,
volume 3509 of Lecture Notes in Computer Science,
Springer, pages 276 – 290, 2005.

[32] M. Rudelson and R. Vershynin. The littlewood-offord
problem and invertibility of random matrices.
Advances in Mathematics, 218:600–633, June 2008.

[33] A. Sankar. Smoothed analysis of Gaussian elimination.
Ph.D. Thesis, MIT, 2004.

[34] A. Sankar, D. A. Spielman, and S.-H. Teng. Smoothed
analysis of the condition numbers and growth factors
of matrices. SIAM Journal on Matrix Analysis and
Applications, 28(2):446–476, 2006.

[35] D. A. Spielman and S.-H. Teng. Smoothed analysis of
algorithms. In Proceedings of the International
Congress of Mathematicians, pages 597–606, 2002.

[36] D. A. Spielman and S.-H. Teng. Smoothed analysis of
algorithms: Why the simplex algorithm usually takes
polynomial time. J. ACM, 51(3):385–463, 2004.

[37] S.-H. Teng. Algorithm design and analysis with
perburbations. In Fourth International Congress of
Chinese Mathematicans, 2007.

[38] R. Vershynin. Beyond Hirsch conjecture: Walks on
random polytopes and smoothed complexity of the
simplex method. In Proceedings of the 47th Annual
IEEE Symposium on Foundations of Computer
Science, pages 133–142, 2006.

[39] V. H. Vu and T. Tao. The condition number of a
randomly perturbed matrix. In STOC ’07: the 39th
annual ACM symposium on Theory of computing,
pages 248–255, 2007.

[40] J. H. Wilkinson. Error analysis of direct methods of
matrix inversion. J. ACM, 8:261–330, 1961.

[41] M. Wschebor. Smoothed analysis of κ(a). J. of
Complexity, 20(1):97–107, February 2004.

