
Algorithms,	Lecture	3	on	NP	:
Nondeterministic	Polynomial	Time

Last	week:
Defined	Polynomial	Time	Reductions:

Problem	X	is	poly	time	reducible	to	Y	
X	≤P	Y

if	can	solve	X	using	poly	computation	and
a	poly	number	of	calls	to	an	algorithm
solving	Y.

“Up	to	poly	factors,	X	is	at	least	as	easy	as	Y”
“Up	to	poly	factors,	Y	is	harder	than	X”

Last	class:
Defined	NP:	
decision	(yes/no)	problems	
can	check	certificates	for	yes	answers	in	ptime

Have	poly	time	proof	checkers:
A	poly	time	algorithm	A	so	that
if	X(s)	=	yes,	

there	exists	a	w	so	that	A(s,w)	=	yes,	and
if	X(s)	=	no,	

for	all	w,	A(s,w)	=	no

Last	class:
Defined	NP-Complete:	
1.	X	∈ NP,	and
2.	X	is	NP-hard

X	is	NP-hard	if:
1.	for	all	Y	∈ NP,	Y	≤P X,	or
2.	CircuitSat ≤P X,	or
3.	Y	≤P X,	for	some	NP-Hard	Y,	such	as

SAT,	Independent	Set,	Vertex	Cover

Last	class:
Proved	CircuitSAT is	NP-Hard.

Proved	CircuitSAT ≤P SAT.

In	fact,	proved	CircuitSAT ≤P 3-SAT

Where	3-SAT	is	SAT,	
but	each	clause	has	at	most	3	terms.

Last	class:
Proved	CircuitSAT is	NP-Hard.

Proved	CircuitSAT ≤P SAT.

In	fact,	proved	CircuitSAT ≤P 3-SAT

Where	3-SAT	is	SAT,	
but	each	clause	has	at	most	3	terms.

Also	possible	to	force	each	variable
to	appear	at	most	3	times

Also	possible	to	force	each	variable
to	appear	at	most	3	times

Say	a	variable	x	appears	k	times.

Create	k	new	variables,	x1,	…,	xk,
one	for	each	occurrence.

Add	clauses	
x1	V	x2 ,	x2	V	x3 ,	…,	xk-1	V	xk ,	xk V	x1

Only	satisfied	if	all	are	equal.

Today

Will	prove	more	problems	are	NP-complete:

3-coloring
Hamiltonian	Cycle
Travelling	Salesman	Problem

k-Coloring

Given	a	graph	G	=	(V,E),	does	there	exist
f	:	V	→ {1,2,…,	k}			(colors)

So	that	for	all	(u,v)	∈ E		f(u)	 f(v)		?

3-colorable Not	3-colorable

6=

3-colorable Not	3-colorable

k-Coloring

Given	a	graph	G	=	(V,E),	does	there	exist
f	:	V	→ {1,2,…,	k}			(colors)

So	that	for	all	(u,v)	∈ E		f(u)	 f(v)		?6=

k-Coloring	is	NP-Complete

Clearly	in	NP,	because	can	check	a	proposed	coloring
To	prove	NP-hard,	will	show		3-SAT	≤P 3-Coloring

Given	a	collection	of	clauses	C1,	…,	Ck,	each	with	at	
most	3	terms,	on	variables	x1,	…,	xn
produce	graph	G	=	(V,E)	that	is
3-colorable	iff the	clauses	are	satisfiable

3-Coloring	is	NP-Complete	– variable	gadgets

Create	3	special	nodes:	T,	F,	B	(base),
and	one	node	for	each	term:	xi and	xi

x1x1 x2x2 xnxn

In	every	3-coloring,	one	of	xi and	xi	
is	colored	T	and	one	is	colored	F

T F

B

xnxnx1

Create	3	special	nodes:	T,	F,	B	(base),
and	one	node	for	each	term:	xi and	xi

x1 x2x2

In	every	3-coloring,	one	of	xi and	xi	
is	colored	T	and	one	is	colored	F

3-Coloring	is	NP-Complete	– variable	gadgets

FT

B

Consider	clause	x1	V	x2 V	xn

3-Coloring	is	NP-Complete	– clause	gadgets

x1 x2 xn

Claim:	3-colorable	iff terms	colored	to	satisfy	clause		

T

B

3-Coloring	is	NP-Complete	– clause	gadgets

x1 x2 xn

Claim:	3-colorable	iff terms	colored	to	satisfy	clause

1.	If	terms	all	colored	F,	then	cannot	3-color		

T

B

3-Coloring	is	NP-Complete	– clause	gadgets

x1 x2 xn

Claim:	3-colorable	iff terms	colored	to	satisfy	clause

1.	If	terms	all	colored	F,	then	cannot	3-color		

T

B

3-Coloring	is	NP-Complete	– clause	gadgets

x1 x2 xn

Claim:	3-colorable	iff terms	colored	to	satisfy	clause

1.	If	terms	all	colored	F,	then	cannot	3-color		

T

B

xnx2x1

3-Coloring	is	NP-Complete	– clause	gadgets
Claim:	3-colorable	iff terms	colored	to	satisfy	clause

2.	If	some	term	true,	can	3-color

T

B

x2x1 xn

3-Coloring	is	NP-Complete	– clause	gadgets
Claim:	3-colorable	iff terms	colored	to	satisfy	clause

2.	If	some	term	true,	can	3-color

T

B

xnx2x1

3-Coloring	is	NP-Complete	– clause	gadgets
Claim:	3-colorable	iff terms	colored	to	satisfy	clause

2.	If	some	term	true,	can	3-color

T

B

3-Coloring	is	NP-Complete

x1x1 x2x2 xnxnx3x3

x1	V	x2 V	xn

3-colorable	iff
satisfiable

FT

B

3-Coloring	is	NP-Complete

x1x1 x2x2 xnxnx3x3

x1	V	x2 V	xn x2	V	x3 V	xn

3-colorable	iff
satisfiable

FT

B

Hamiltonian	Cycle:
A	cycle	in	a	graph	that	hits	each	vertex	once.

Directed	Hamiltonian	Cycle:
same,	but	in	a	directed	graph

Directed	Ham	Cycle	is	NP-Complete

Clearly	in	NP,	because	can	check	if	a	cycle	is				
Hamiltonian

To	prove	NP-hard,	will	show		
3-SAT	≤P Directed	Ham	Cycle

Produce	directed	graph	G	=	(V,E)	that	
has	Ham	Cycle	iff the	clauses	are	satisfiable

Start:	create	graph	with	2n Ham	Cycles,
then	create	gadgets	to	restrict	them

1:

2:

3:

n:

Start:	create	graph	with	2n Ham	Cycles,
then	create	gadgets	to	restrict	them

1:

2:

3:

n:

Start:	create	graph	with	2n Ham	Cycles,
then	create	gadgets	to	restrict	them

s

t

1:

2:
3:

n:

Must	go	top-to-bottom,	and	can	traverse	each	row
left-to-right	(True)	or	right-to-left	(False)

Start:	create	graph	with	2n Ham	Cycles,
then	create	gadgets	to	restrict	them

Must	go	top-to-bottom,	and	can	traverse	each	row
left-to-right	(True)	or	right-to-left	(False)

s

t

1:

2:
3:

n:

Clause	gadgets True					False

s

t

1:

2:
3:

n:

clause						x1 forces	traverse	first	row											

x1	V	x2 V	xn

Clause	gadgets True					False

s

t

1:

2:
3:

n:

clause						

Forces	traverse	1							,	or	2							,	or	n												

x1	V	x2 V	xn

Clause	gadgets True					False

2:

clause						

To	see	must	come	back	to	same	row,	
note	that	if	do	not	is	no	hamiltonian
path	through	unused	down-link

x1	V	x2 V	xn

Clause	gadgets True					False

1:

2:

n:

clause						

Forces	traverse	1							,	or	2							,	or	n												

x1	V	x2 V	xn
Ham	cycle	iff satisfiable True					False

s

t

1:

2:
3:

n:

Pf.	If	satisfiable,
traverse	in	order
indicated	by	vars,
picking	up	each
clause	once	using
some	true	term.	

x1	V	x2 V	xn
Ham	cycle	iff satisfiable True					False

s

t

1:

2:
3:

n:

Pf.	If	Ham	Cycle,	
must	go	
top	to	bottom

assign	vars by	direction

if	visit	each	clause	node,	then	is	made	true	by	term	on	row
from	which	make	the	visit.

voutvin

Directed	Ham	Cycle	≤P	Ham	Cycle

1. In	directed	problem,	
answer	same	if	reverse	all	arrows.

2.	To	transform	to	undirected,	
replace	each	vertex	v	with	three	vertices:
vin,	vbase,	vout

vbuoutuin ub

u v
Replace	directed	(u,v)		edge	with	(uout ,	vin)

Directed	Ham	Cycle	≤P	Ham	Cycle

uoutuin ub

Claim:	If	these	are	only	edges	to	ub,	
then	in	every	Hamiltonian	cycle	
ub must	be	adjacent	to	uin

Proof:	if	it	is	not,	then	once	enter	ub
can	not	get	out

voutvin vbuoutuin ub

Replace	directed	(u,v)		edge	with	(uout ,	vin)

Directed	Ham	Cycle	in	original	->	Ham	Cycle

woutwin wb

u v

w

Directed	Ham	Cycle	≤P	Ham	Cycle

voutvin vbuoutuin ub

Replace	directed	(u,v)		edge	with	(uout ,	vin)

Lemma:
Every	Ham	Cycle	in	the	undirected	graph	must	go
in,	base,	out,	in,	base,	out,	in,	base,	out,		etc,
must	correspond	to	a	Ham	Cyc in	directed	graph	

woutwin wb

u v

w

Directed	Ham	Cycle	≤P	Ham	Cycle

TSP	(Travelling	Salesperson	Problem)

Given	n	locations,	a	distance	function	d(u,v)
and	a	total	distance	D,	does	there	exist	a	tour
through	all	locations	of	total	distance	at	most	L?

http://www.tsp.gatech.edu/usa13509/usa13509_info.html

TSP	(Travelling	Salesperson	Problem)

Given	n	locations,	a	distance	function	d(u,v)
and	a	total	distance	D,	does	there	exist	a	tour
through	all	locations	of	total	distance	at	most	L?

http://www.tsp.gatech.edu/usa13509/usa13509_sol.html

RL5915 optimal solution
An optimal solution for RL5915 is given by the following tour, which has length 565530.

http://www.tsp.gatech.edu/rl5915/rl5915_sol.html

TSP	is	NP-complete

Ham	Cycle	≤P	TSP

Given	graph	G	=	(V,E),	
create	one	location	for	each	vertex,

d(u,v)	=	1	if	(u,v)	∈ E	
2	otherwise

Target	distance	=	|V|

A	tour	of	all	locations	that	returns	to	start	and	has	
total	length	|V|	must	use	exactly	|V|	edges	of	G	

TSP	is	NP-complete

Ham	Cycle	≤P	TSP

Given	graph	G	=	(V,E),	
create	one	location	for	each	vertex,

d(u,v)	=	1	if	(u,v)	∈ E	
2	otherwise

This	is	an	abstract	distance	function.

TSP	is	NP-complete

Ham	Cycle	≤P	TSP

Given	graph	G	=	(V,E),	
create	one	location	for	each	vertex,

d(u,v)	=	1	if	(u,v)	∈ E	
2	otherwise

This	is	an	abstract	distance	function.

Remains	NP-hard	for	integer	points	in	plane.

Issue	with	Planar	TSP

If	input	is	locations	of	points,	instead	of	distances

The	problem	is	not	known	to	be	in	NP,
because	do	not	know	if	can	compare
distances	in	polynomial	time.

For	integers	x1,	…,	xn integer	t,	do	not	have	poly	
time	algorithm	to	test	if

X

i

p
xi  t

