Algorithms, Lecture 3 on NP:
Nondeterministic Polynomial Time
Last week:

Defined Polynomial Time Reductions:

Problem X is poly time reducible to Y
\[X \leq_p Y \]
if can solve X using poly computation and a poly number of calls to an algorithm solving Y.

“Up to poly factors, X is at least as easy as Y”
“Up to poly factors, Y is harder than X”
Last class:

Defined NP:
 decision (yes/no) problems
 can check certificates for yes answers in ptime

Have poly time *proof checkers*:
 A poly time algorithm A so that
 if \(X(s) = \text{yes} \),
 there exists a \(w \) so that \(A(s,w) = \text{yes} \), and
 if \(X(s) = \text{no} \),
 for all \(w \), \(A(s,w) = \text{no} \)
Last class:

Defined NP-Complete:
1. \(X \in \text{NP}, \) and
2. \(X \) is NP-hard

\(X \) is NP-hard if:
1. for all \(Y \in \text{NP}, \ Y \leq_{\text{p}} X, \) or
2. CircuitSat \(\leq_{\text{p}} X, \) or
3. \(Y \leq_{\text{p}} X, \) for some NP-Hard \(Y, \) such as SAT, Independent Set, Vertex Cover
Last class:

Proved CircuitSAT is NP-Hard.

Proved CircuitSAT \leq_p SAT.

In fact, proved CircuitSAT \leq_p 3-SAT

Where 3-SAT is SAT,
 but each clause has at most 3 terms.
Last class:

Proved CircuitSAT is NP-Hard.

Proved CircuitSAT \leq_p SAT.

In fact, proved CircuitSAT \leq_p 3-SAT

Where 3-SAT is SAT,
 but each clause has at most 3 terms.

Also possible to force each variable
to appear at most 3 times
Also possible to force each variable to appear at most 3 times

Say a variable x appears k times.

Create k new variables, $x_1, ..., x_k$, one for each occurrence.

Add clauses

$$x_1 \lor \overline{x_2} \lor x_2 \lor \overline{x_3} \lor ..., x_{k-1} \lor \overline{x_k} \lor x_k \lor \overline{x_1}$$

Only satisfied if all are equal.
Today

Will prove more problems are NP-complete:

3-coloring
Hamiltonian Cycle
Travelling Salesman Problem
k-Coloring

Given a graph $G = (V,E)$, does there exist

$f : V \rightarrow \{1,2,\ldots, k\}$ (colors)

So that for all $(u,v) \in E$ $f(u) \neq f(v)$?

3-colorable

Not 3-colorable
k-Coloring

Given a graph $G = (V,E)$, does there exist $f : V \rightarrow \{1,2,\ldots,k\}$ (colors) such that for all $(u,v) \in E$ $f(u) \neq f(v)$?

3-colorable

Not 3-colorable
k-Coloring is NP-Complete

Clearly in NP, because can check a proposed coloring
To prove NP-hard, will show \(3\text{-SAT} \leq_p 3\text{-Coloring} \)

Given a collection of clauses \(C_1, \ldots, C_k \), each with at most 3 terms, on variables \(x_1, \ldots, x_n \)

produce graph \(G = (V,E) \) that is
3-colorable iff the clauses are satisfiable
3-Coloring is NP-Complete – variable gadgets

Create 3 special nodes: T, F, B (base), and one node for each term: x_i and $\overline{x_i}$

In every 3-coloring, one of x_i and $\overline{x_i}$ is colored T and one is colored F
3-Coloring is NP-Complete – variable gadgets

Create 3 special nodes: T, F, B (base), and one node for each term: x_i and $\overline{x_i}$

In every 3-coloring, one of x_i and $\overline{x_i}$ is colored T and one is colored F
3-Coloring is NP-Complete – clause gadgets

Consider clause $x_1 \lor \overline{x_2} \lor x_n$

Claim: 3-colorable iff terms colored to satisfy clause
3-Coloring is NP-Complete – clause gadgets

Claim: 3-colorable iff terms colored to satisfy clause

1. If terms all colored F, then cannot 3-color
3-Coloring is NP-Complete – clause gadgets
Claim: 3-colorable iff terms colored to satisfy clause

1. If terms all colored F, then cannot 3-color
3-Coloring is NP-Complete – clause gadgets

Claim: 3-colorable iff terms colored to satisfy clause

1. If terms all colored F, then cannot 3-color
3-Coloring is NP-Complete – clause gadgets

Claim: 3-colorable iff terms colored to satisfy clause

2. If some term true, can 3-color
3-Coloring is NP-Complete – clause gadgets

Claim: 3-colorable iff terms colored to satisfy clause

2. If some term true, can 3-color
3-Coloring is NP-Complete – clause gadgets

Claim: 3-colorable iff terms colored to satisfy clause

2. If some term true, can 3-color
3-Coloring is NP-Complete

3-colorable iff satisfiable

\[x_1 \lor \overline{x_2} \lor x_n \]
3-Coloring is NP-Complete

3-colorable iff satisfiable

\[x_1 \lor \overline{x_2} \lor x_n \]

\[\overline{x_2} \lor \overline{x_3} \lor x_n \]
Hamiltonian Cycle:
A cycle in a graph that hits each vertex once.

Directed Hamiltonian Cycle:
same, but in a directed graph
Directed Ham Cycle is NP-Complete

Clearly in NP, because can check if a cycle is Hamiltonian

To prove NP-hard, will show

3-SAT ≤ₚ Directed Ham Cycle

Produce directed graph $G = (V,E)$ that has Ham Cycle iff the clauses are satisfiable
Start: create graph with 2^n Ham Cycles, then create gadgets to restrict them
Start: create graph with 2^n Ham Cycles, then create gadgets to restrict them.
Start: create graph with 2^n Ham Cycles, then create gadgets to restrict them

Must go top-to-bottom, and can traverse each row left-to-right (True) or right-to-left (False)
Start: create graph with 2^n Ham Cycles, then create gadgets to restrict them.

Must go top-to-bottom, and can traverse each row left-to-right (True) or right-to-left (False).
Clause gadgets

clause \(x_1 \) forces traverse first row
Clause gadgets

clause

\[x_1 \lor \overline{x}_2 \lor x_n \]

Forces traverse 1 \(\rightarrow \), or 2 \(\leftarrow \), or \(n \rightarrow \)
To see must come back to same row, note that if do not is no hamiltonian path through unused down-link
Clause gadgets

clause

\[x_1 \lor \overline{x}_2 \lor x_n \]

Forces traverse 1 \rightarrow, or 2 \leftarrow, or n \rightarrow
Ham cycle iff satisfiable

Pf. If satisfiable, traverse in order indicated by vars, picking up each clause once using some true term.
Ham cycle iff satisfiable

Pf. If Ham Cycle, must go top to bottom

assign vars by direction

if visit each clause node, then is made true by term on row from which make the visit.
Directed Ham Cycle \leq_p Ham Cycle

1. In directed problem, answer same if reverse all arrows.

2. To transform to undirected, replace each vertex v with three vertices: $V_{in}, V_{base}, V_{out}$

Replace directed (u,v) edge with (u_{out}, v_{in})
Claim: If these are only edges to \(u_b \), then in every Hamiltonian cycle \(u_b \) must be adjacent to \(u_{in} \)

Proof: if it is not, then once enter \(u_b \) can not get out
Directed Ham Cycle \leq_p Ham Cycle

Replace directed (u,v) edge with $(u_{\text{out}}, v_{\text{in}})$

Directed Ham Cycle in original \rightarrow Ham Cycle
Directed Ham Cycle \leq_p Ham Cycle

Replace directed (u,v) edge with $(u_{\text{out}}, v_{\text{in}})$

Lemma:
Every Ham Cycle in the undirected graph must go
in, base, out, in, base, out, in, base, out, etc,
must correspond to a Ham Cyc in directed graph
TSP (Travelling Salesperson Problem)

Given n locations, a distance function $d(u,v)$ and a total distance D, does there exist a tour through all locations of total distance at most L?

http://www.tsp.gatech.edu/usa13509/usa13509_info.html
TSP (Travelling Salesperson Problem)

Given n locations, a distance function $d(u,v)$ and a total distance D, does there exist a tour through all locations of total distance at most L?

http://www.tsp.gatech.edu/usa13509/usa13509_sol.html
RL5915 optimal solution

An optimal solution for RL5915 is given by the following tour, which has length 565530.

http://www.tsp.gatech.edu/rl5915/rl5915_sol.html
TSP is NP-complete

Ham Cycle \leq_p TSP

Given graph $G = (V,E)$,
create one location for each vertex,

\[d(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E \\ 2 & \text{otherwise} \end{cases} \]

Target distance = $|V|$

A tour of all locations that returns to start and has total length $|V|$ must use exactly $|V|$ edges of G
TSP is NP-complete

Ham Cycle \leq_p TSP

Given graph $G = (V,E)$,
create one location for each vertex,

$d(u,v) = 1$ if $(u,v) \in E$
2 otherwise

This is an abstract distance function.
TSP is NP-complete

Ham Cycle \leq_p TSP

Given graph $G = (V,E)$,
create one location for each vertex,

$$d(u,v) = 1 \text{ if } (u,v) \in E$$
$$2 \text{ otherwise}$$

This is an abstract distance function.

Remains NP-hard for integer points in plane.
Issue with Planar TSP

If input is locations of points, instead of distances

The problem is not known to be in NP, because do not know if can compare distances in polynomial time.

For integers x_1, \ldots, x_n integer t, do not have poly time algorithm to test if

$$\sum_i \sqrt{x_i} \leq t$$
Classic Nintendo Games are (NP-)Hard

Greg Aloupis* Erik D. Demaine† Alan Guo‡

March 9, 2012

Abstract

We prove NP-hardness results for five of Nintendo’s largest video game franchises: Mario, Donkey Kong, Legend of Zelda, Metroid, and Pokémon. Our results apply to Super Mario Bros. 1, 3, Lost Levels, and Super Mario World; Donkey Kong Country 1–3; all Legend of Zelda games except Zelda II: The Adventure of Link; all Metroid games; and all Pokémon role-playing games. For Mario and Donkey Kong, we show NP-completeness. In addition, we observe that several games in the Zelda series are PSPACE-complete.
Candy Crush is NP-hard

Toby Walsh

NICTA and University of NSW, Sydney, Australia

Abstract

We prove that playing Candy Crush to achieve a given score in a fixed number of swaps is NP-hard.

Keywords: computational complexity, NP-completeness, Candy Crush.
Bejeweled, Candy Crush and other Match-Three Games are (NP-)Hard

L. Gualà¹, S. Leucci², and E. Natale³

¹Università degli Studi di Roma Tor Vergata
guala@mat.uniroma2.it
²Università degli Studi dell’Aquila
stefano.leucci@univaq.it
³Sapienza Università di Roma
natale@di.uniroma1.it

March 25, 2014