
CPSC 366. Lecture 19. April 5, 2022.
Lecture 4 on NP:

Nondeterministic Polynomial Time

Polynomial Time (Cook-Levin) Reductions:

Problem X is poly time reducible to Y
X ≤P Y

if can solve X using poly computation and
a poly number of calls to an algorithm
solving Y.

“Up to poly factors, X is at least as easy as Y”
“Up to poly factors, Y is harder than X”

Y is NP-hard if for all X in NP, X ≤P Y

Karp Reductions (a.k.a. many-to-one reductions)

Problem X is poly time Karp reducible to Y if
there is a polynomial time algorithm A such that

X(s) = yes if and only if Y(A(s)) = yes

A transforms instances of X into instances of Y.

All of our reductions have been (and will be)
Karp reductions.

NP-Hard problems
Circuit-SAT
(3,3)-SAT
Independent Set, Vertex Cover
3 Dimensional Matching, Exact Cover
Subset Sum

Today
3-coloring
Hamiltonian Cycle
Travelling Salesperson Problem

k-Coloring

Given a graph G = (V,E), does there exist
f : V → {1,2,…, k} (colors)

So that for all (u,v) ∈ E f(u) ¹ f(v) ?

3-colorable Not 3-colorable

3-colorable Not 3-colorable

k-Coloring

Given a graph G = (V,E), does there exist
f : V → {1,2,…, k} (colors)

So that for all (u,v) ∈ E f(u) ¹ f(v) ?

k-Coloring is NP-Complete

Clearly in NP, because can check a proposed coloring
To prove NP-hard, will show 3-SAT ≤P 3-Coloring

Given a collection of clauses C1, …, Ck, each with at
most 3 terms, on variables x1, …, xn

produce graph G = (V,E) that is
3-colorable iff the clauses are satisfiable

3-Coloring is NP-Complete – variable gadgets

Create 3 special nodes: T, F, B (base),
and one node for each term: xi and xi

x1x1 x2x2 xnxn

In every 3-coloring, one of xi and xi
is colored T and one is colored F

T F

B

xnxnx1

Create 3 special nodes: T, F, B (base),
and one node for each term: xi and xi

x1 x2x2

In every 3-coloring, one of xi and xi
is colored T and one is colored F

3-Coloring is NP-Complete – variable gadgets

FT

B

Consider clause x1 V x2 V xn

3-Coloring is NP-Complete – clause gadgets

x1 x2 xn

Claim: 3-colorable iff terms colored to satisfy clause

T

B

3-Coloring is NP-Complete – clause gadgets

x1 x2 xn

Claim: 3-colorable iff terms colored to satisfy clause

1. If terms all colored F, then cannot 3-color

T

B

3-Coloring is NP-Complete – clause gadgets

x1 x2 xn

Claim: 3-colorable iff terms colored to satisfy clause

1. If terms all colored F, then cannot 3-color

T

B

k-Coloring is NP-Complete – clause gadgets

x1 x2 xn

Claim: 3-colorable iff terms colored to satisfy clause

1. If terms all colored F, then cannot 3-color

T

B

xnx2x1

3-Coloring is NP-Complete – clause gadgets
Claim: 3-colorable iff terms colored to satisfy clause

2. If some term true, can 3-color

T

B

x2x1 xn

3-Coloring is NP-Complete – clause gadgets
Claim: 3-colorable iff terms colored to satisfy clause

2. If some term true, can 3-color

T

B

xnx2x1

3-Coloring is NP-Complete – clause gadgets
Claim: 3-colorable iff terms colored to satisfy clause

2. If some term true, can 3-color

T

B

3-Coloring is NP-Complete

x1x1 x2x2 xnxnx3x3

x1 V x2 V xn

3-colorable iff
satisfiable

FT

B

k-Coloring is NP-Complete

x1x1 x2x2 xnxnx3x3

x1 V x2 V xn x2 V x3 V xn

3-colorable iff
satisfiable

FT

B

Hamiltonian Cycle:
A cycle in a graph that hits each vertex once.

Directed Hamiltonian Cycle:
same, but in a directed graph

Directed Ham Cycle is NP-Complete

Clearly in NP, because can check if a cycle is
Hamiltonian

To prove NP-hard, will show
3-SAT ≤P Directed Ham Cycle

Produce directed graph G = (V,E) that
has Ham Cycle iff the clauses are satisfiable

Start: create graph with 2n Ham Cycles,
then create gadgets to restrict them

1:

2:

3:

n:

Start: create graph with 2n Ham Cycles,
then create gadgets to restrict them

1:

2:

3:

n:

Start: create graph with 2n Ham Cycles,
then create gadgets to restrict them

Must go top-to-bottom, and can traverse each row
left-to-right (True) or right-to-left (False)

s

t

1:

2:
3:

n:

Clause gadgets True False

s

t

1:

2:
3:

n:

clause x1 forces traverse first row

Clause gadgets True False

s

t

1:

2:
3:

n:

clause x1 forces traverse first row

All edges to these vertices are shown.

x1 V x2 V xn

Clause gadgets True False

s

t

1:

2:
3:

n:

clause

Forces traverse 1 , or 2 , or n

x1 V x2 V xn

Clause gadgets True False

2:

clause

To see must come back to same row,
note that if do not is no Hamiltonian
path through unused down-link:

If go through red node from left, is no way out
if blue node and clause node have been used.

x1 V x2 V xn

Ham cycle iff satisfiable True False

s

t

1:

2:
3:

n:

Pf. If satisfiable,
traverse in order
indicated by vars,
picking up each
clause once using
some true term.

Pf. If Ham Cycle,
must go top to bot

assign vars by direction

if visit each clause node, then is made true by term on row
from which make the visit.

x1 V x2 V xn

Ham cycle iff satisfiable True False

1:

2:
3:

n:

s

t

voutvin

Directed Ham Cycle ≤P Ham Cycle

1. In directed problem,
answer same if reverse all arrows.

2. To transform to undirected,
replace each vertex v with three vertices:
vin, vbase, vout

vbuoutuin ub

u v
Replace directed (u,v) edge with (uout , vin)

Directed Ham Cycle ≤P Ham Cycle

uoutuin ub

Claim: If these are only edges to ub,
then in every Hamiltonian cycle
ub must be adjacent to uin

Proof: if it is not, then once enter ub
can not get out

voutvin vbuoutuin ub

Replace directed (u,v) edge with (uout , vin)

Directed Ham Cycle in original -> Ham Cycle

woutwin wb

u v

w

Directed Ham Cycle ≤P Ham Cycle

voutvin vbuoutuin ub

Replace directed (u,v) edge with (uout , vin)

Lemma:
Every Ham Cycle in the undirected graph must go
in, base, out, in, base, out, in, base, out, etc,
must correspond to a Ham Cyc in directed graph

woutwin wb

u v

w

Directed Ham Cycle ≤P Ham Cycle

TSP (Travelling Salesperson Problem)

Given n locations, a distance function d(u,v)
and a total distance D, does there exist a tour
through all locations of total distance at most L?

http://www.tsp.gatech.edu/usa13509/usa13509_info.html

TSP (Travelling Salesperson Problem)

Given n locations, a distance function d(u,v)
and a total distance D, does there exist a tour
through all locations of total distance at most L?

http://www.tsp.gatech.edu/usa13509/usa13509_sol.html

RL5915 optimal solution
An optimal solution for RL5915 is given by the following tour, which has length 565530.

http://www.tsp.gatech.edu/rl5915/rl5915_sol.html

http://www.tsp.gatech.edu/rl5915/rl5915_info.html

TSP is NP-complete

Ham Cycle ≤P TSP

Given graph G = (V,E),
create one location for each vertex,

d(u,v) = 1 if (u,v) ∈ E
2 otherwise

Target distance = |V|

A tour of all locations that returns to start and has
total length |V| must use exactly n edges of G

TSP is NP-complete

Ham Cycle ≤P TSP

Given graph G = (V,E),
create one location for each vertex,

d(u,v) = 1 if (u,v) ∈ E
2 otherwise

This is an abstract distance function.

TSP is NP-complete

Ham Cycle ≤P TSP

Given graph G = (V,E),
create one location for each vertex,

d(u,v) = 1 if (u,v) ∈ E
2 otherwise

This is an abstract distance function.

Remains NP-hard for integer points in plane.

Issue with Planar TSP

If input is locations of points, instead of distances

The problem is not known to be in NP,
because do not know if can compare
distances in polynomial time.

For integers x1, …, xn integer t, do not have poly
time algorithm to test if

X

i

p
xi t

