CPSC 366. Lecture 19. April 5, 2022.
Lecture 4 on NP:
Nondeterministic Polynomial Time

Polynomial Time (Cook-Levin) Reductions:

Problem X is poly time reducible to Y
X< Y
if can solve X using poly computation and
a poly number of calls to an algorithm
solving Y.

“Up to poly factors, X is at least as easy as Y”
“Up to poly factors, Y is harder than X”

Y is NP-hard if for all X in NP, X £, Y

Karp Reductions (a.k.a. many-to-one reductions)

Problem X is poly time Karp reducible to Y if
there is a polynomial time algorithm A such that

X(s) = yes if and only if Y(A(s)) = yes
A transforms instances of X into instances of Y.

All of our reductions have been (and will be)
Karp reductions.

NP-Hard problems
Circuit-SAT
(3,3)-SAT
Independent Set, Vertex Cover

3 Dimensional Matching, Exact Cover
Subset Sum

Today
3-coloring
Hamiltonian Cycle
Travelling Salesperson Problem

k-Coloring
Given a graph G = (V,E), does there exist

f:vVv=>11,2,..,k} (colors)
So that for all (u,v) € E f(u) #f(v) ?

C>D<”)
O O

3-colorable Not 3-colorable

k-Coloring

Given a graph G = (V,E), does there exist
f:vVv=>11,2,..,k} (colors)
So that for all (u,v) € E f(u) = f(v) ?

3-colorable Not 3-colorable

k-Coloring is NP-Complete

Clearly in NP, because can check a proposed coloring
To prove NP-hard, will show 3-SAT <, 3-Coloring

Given a collection of clauses C,, ..., C,, each with at
most 3 terms, on variables x, ..., X,

produce graph G = (V,E) that is
3-colorable iff the clauses are satisfiable

3-Coloring is NP-Complete — variable gadgets

Create 3 special nodes: T, F, B (base),
and one node for each term: x; andx;

In every 3-coloring, one of x; and x.
is colored T and one is colored F

3-Coloring is NP-Complete — variable gadgets

Create 3 special nodes: T, F, B (base),
and one node for each term: x; andx;

@ ® © @

In every 3-coloring, one of x; and x.
is colored T and one is colored F

3-Coloring is NP-Complete — clause gadgets

Consider clause x; V x, V x,

T

Claim: 3-colorable iff terms colored to satisfy clause

3-Coloring is NP-Complete — clause gadgets
Claim: 3-colorable iff terms colored to satisfy clause

1. If terms all colored F, then cannot 3-color

T

3-Coloring is NP-Complete — clause gadgets
Claim: 3-colorable iff terms colored to satisfy clause

1. If terms all colored F, then cannot 3-color

T

k-Coloring is NP-Complete — clause gadgets
Claim: 3-colorable iff terms colored to satisfy clause

1. If terms all colored F, then cannot 3-color

T

3-Coloring is NP-Complete — clause gadgets
Claim: 3-colorable iff terms colored to satisfy clause

2. If some term true, can 3-color

3-Coloring is NP-Complete — clause gadgets
Claim: 3-colorable iff terms colored to satisfy clause

2. If some term true, can 3-color

3-Coloring is NP-Complete — clause gadgets
Claim: 3-colorable iff terms colored to satisfy clause

2. If some term true, can 3-color

3-Coloring is NP-Complete

3-colorable iff
B satisfiable
%) %) &—&))&
NG
@ @

X, VX, VX,

k-Coloring is NP-Complete
0 0@

3-colorable iff
satisfiable

Hamiltonian Cycle:
A cycle in a graph that hits each vertex once.

Directed Hamiltonian Cycle:
same, but in a directed graph

Directed Ham Cycle is NP-Complete

Clearly in NP, because can check if a cycle is
Hamiltonian

To prove NP-hard, will show
3-SAT <, Directed Ham Cycle

Produce directed graph G = (V,E) that
has Ham Cycle iff the clauses are satisfiable

Start: create graph with 2" Ham Cycles,
then create gadgets to restrict them

! d@é@@@@@ 1

S
B O

@C@C@Cc@j

Start: create graph with 2" Ham Cycles,
then create gadgets to restrict them

/

1: 0’ @
o

2: O
&

3: Q) O

Start: create graph with 2" Ham Cycles,
then create gadgets to restrict them

@:
1. fg“’o ;:P
§—>O<—>O<—>O<—>O<—>O<—>O<—>O
/?P

3‘%@

o3

Must go top-to-bottom, and can traverse each row
left-to-right (True) or right-to-left (False)

Emmn)
Clause gadgets True False

forces traverse first row m)

©= T
1: pr

B0 00000 0s0er0

SR oo A

y. -
ey

clause

) E—
Clause gadgets True False

clause forces traverse first row)

All edges to these vertices are shown.

) E—
Clause gadgets True False

clause
@: \
1: Zﬁ

2 @W@*Wwp

SO0 A
A

Forces traverse 1 ==, or 24=m oOr n ==

) E—
Clause gadgets True False

clause

2:O<—>O<—>O

To see must come back to same row,
note that if do not is no Hamiltonian
path through unused down-link:

If go through red node from left, is no way out
if blue node and clause node have been used.

Ham cycle iff satisfiable True False

Pf. If satisfiable, =
traverse in order .
indicated by vars, 1 Zﬁ?

picking up each 2§—>O<—>O<—:O<—M<_>O<_>o Q
clause once using 3% A/é?

some true term.
n:
~__ e S

Ham cycle iff satisfiable True False

Pf. If Ham Cycle,
must go top to bot 1-

assign vars by dlrectlon J

if visit each clause node, then is made true by term on row
from which make the visit.

@t\

Directed Ham Cycle <, Ham Cycle

1. In directed problem,
answer same if reverse all arrows.

2. To transform to undirected,
replace each vertex v with three vertices:

Replace directed (u,v) edge with (u

in’ Vbasel

out /

@-@—m——m—m—m

Directed Ham Cycle <, Ham Cycle

—0-0-0—

Claim: If these are only edges to u,,
then in every Hamiltonian cycle
u, must be adjacent to u;,

Proof: if it is not, then once enter u,
can not get out

Directed Ham Cycle <, Ham Cycle

Replace directed (u,v) edge with (u

O-O-0 e:u:wm
g \@ -0-0

Directed Ham Cycle in original -> Ham Cycle

Directed Ham Cycle <, Ham Cycle

Replace directed (u,v) edge with (u

@g {00

Lemma:
Every Ham Cycle in the undirected graph must go
in, base, out, in, base, out, in, base, out, etc,
must correspond to a Ham Cyc in directed graph

Vin

out /

20
e-0-0

TSP (Travelling Salesperson Problem)

Given n locations, a distance function d(u,v)
and a total distance D, does there exist a tour
through all locations of total distance at most L?

¥
“hn

. T . .
e

. e 3
et -

1.7-- Ry :..'-.‘. .
Fag” 2 Y il
s Ry

..

r., i..
L

£ e .

. s“(‘. :
%

..'ﬂ

http://www.tsp.gatech.edu/usal3509/usa 13509_ini‘6.htm|

TSP (Travelling Salesperson Problem)

Given n locations, a distance function d(u,v)
and a total distance D, does there exist a tour
through all locations of total distance at most L?

ote

i

;ﬁ):ﬁfw o L \

e AN VP
B o

¢ 3
(IRl
gfé"’“%fi' . il
gl
-
http://www.tsp.gatech.edu/usal3509/usal3509 sol.html

1%

RL5915 optimal solution
An optimal solution for RL5915 is given by the fO”OWing tour, which has Iength 565530.

http://www.tsp.gatech.edu/rl15915/rI15915 sol.html

http://www.tsp.gatech.edu/rl5915/rl5915_info.html

TSP is NP-complete

Ham Cycle <, TSP

Given graph G = (V,E),
create one location for each vertex,

d(uv)=1if(u,v) EE
2 otherwise

Target distance = | V|

A tour of all locations that returns to start and has
total length |V| must use exactly n edges of G

TSP is NP-complete

Ham Cycle <, TSP

Given graph G = (V,E),
create one location for each vertex,

d(uv)=1if(u,v) EE
2 otherwise

This is an abstract distance function.

TSP is NP-complete

Ham Cycle <, TSP

Given graph G = (V,E),
create one location for each vertex,

d(uv)=1if(u,v) EE
2 otherwise

This is an abstract distance function.

Remains NP-hard for integer points in plane.

Issue with Planar TSP

If input is locations of points, instead of distances

The problem is not known to be in NP,
because do not know if can compare
distances in polynomial time.

For integers x,, ..., X, integer t, do not have poly
time algorithm to test if

> <

Classic Nintendo Games are (NP-)Hard

Greg Aloupis® Erik D. Demaine’ Alan Guo'*
March 9, 2012

Abstract

We prove NP-hardness results for five of Nintendo’s largest video game franchises: Mario,
Donkey Kong, Legend of Zelda, Metroid, and Pokémon. Our results apply to Super Mario
Bros. 1, 3, Lost Levels, and Super Mario World; Donkey Kong Country 1-3; all Legend of Zelda
games except Zelda 1I: The Adventure of Link; all Metroid games; and all Pokémon role-playing
games, For Mario and Donkey Kong, we show NP-completeness. In addition, we observe that
several games in the Zelda series are PSPACE-complete.

u
~—
—
—
~—
-
~—
-
-
-
u

r
r
r
r
r
r
"
r
r
r
r
r
r
Al
Al

Figure 4: Variable gadget for Mario Figure 5: Clause gadget for Mario

Candy Crush is NP-hard

Toby Walsh
NICTA and University of NSW, Sydney, Australia

Abstract

We prove that playing Candy Crush to achieve a given score in a fixed number
of swaps is NP-hard.

Keywords: computational complexity, NP-completeness, Candy Crush.

The Legend of Zelda: The Complexity of Mechanics

Jeffrey Bosboom* Josh Brunner* Michael Coulombe*
Erik D. Demaine* Dylan H. Hendrickson* Jayson Lynchf
Elle Najt
Abstract

We analyze some of the many game mechanics available to Link in the classic Legend of Zelda
series of video games. In each case, we prove that the generalized game with that mechanic
is polynomial, NP-complete, NP-hard and in PSPACE, or PSPACE-complete. In the process
we give an overview of many of the hardness proof techniques developed for video games over
the past decade: the motion-planning-through-gadgets framework, the planar doors framework,
the doors-and-buttons framework, the “Nintendo” platform game / SAT framework, and the
collectible tokens and toll roads / Hamiltonicity framework.

[cs.CC] 31 Mar 2022

1 Introduction

“It’s dangerous to go alone! Take this.”

e e

Figure 3: Platforms and locked door finale gadgets in the construction of Theorem E from a two-vertex

