
Intensive Algorithms Lecture 11

DFT and DP

Lecturer: Daniel A. Spielman March 1, 2022

11.1 Introduction

The purpose of this lecture is to learn how to use the Discrete Fourier Transform to save space in
Dynamic Programming. I am teaching this because it introduces a completely new way to think
about dynamic programming. If there is time at the end, I will talk a little about the use of
polynomials for error-correction in digital communication.

The main result comes from the paper “Saving Space by Algebraization” by Lokshtanof and Ned-
erlof [LN10]. I do not recommend that you try to read this paper because it solves a more abstract
problem. The results in that paper have been improved. For example, see [JVW21].

11.2 Space and Subset Sum

The problem that we will use to demonstrate their technique is called subset sum. It is a special
case of the knapsack problem. The input to the subset sum problem is a list of positive integers
a1, . . . , an along with a target integer T , and the answer is “yes” if there is an S ⊆ {1, . . . , n} such
that ∑

i∈S
ai = T.

The problem only asks for the one bit answer: “yes” or “no.” We may assume without loss of
generality that all ai ≤ T , as we can safely discard any ai that are larger.

We can solve this problem by Dynamic Programming in timeO(nT) by building a table of achievable
sums. For example, we could set opt(j, t) to be true if there is an S ⊆ {1, . . . , j} for which∑

i∈S ai = t. We can then compute all the entires in this table by the recurrence

opt(j, t) = opt(j − 1, t) or opt(j − 1, t− aj).

In fact, we can make this table a little smaller by dropping the first coordinate. Consider the
following routine:

1. For t in 1 to n, set opt(t) = false. Set opt(0) = true.

2. For i from 1 to n

a. For t from T down to 1, if ai ≤ t set opt(t) = opt(t) or opt(t− ai).

11-1

Lecture 11: March 1, 2022 11-2

You can show that after the ith iteration, opt(t) = opt(i, t) for all t. This version uses space O(T)
and takes time O(nT).

We could even use a loop like this to count the number of solutions. Consider instead

1. For t in 1 to n, set c(t) = 0. Set c(0) = true.

2. For i from 1 to n

a. For t from T down to 1, if ai ≤ t set c(t) = c(t) + c(t− ai).

One can prove by induction that after the ith iteration, c(t) equals the number of subsets of
{1, . . . , i} that give the sum t. After observing that each c(t) is always at most 2n, we see that this
version requires at most O(nT) bits.

We would now like to see how to solve this problem by using less space. The important property
of space / memory that we are going to exploit is that it can be reused.

To get us used to this idea, I will show that we can solve this problem using O(n+ log T) bits, but
O(2nn log T) time. This is the space and time required to go through every possible subset (there
are 2n), compute the sum for that subset (in time O(n log T)), and check if it equals T . We need n
bits to keep track of the current subset, and O(log T) bits to write down the sum for that subset.
It might seem that we could need as many as log(nT) bits, but we can avoid this by stopping if
the sum exceeds T .

This algorithm is reasonable if T ≥ 2n, but is very slow if T << 2n. We see an algorithm that uses
space essentially O(n+ log(T)) and time almost O(n3T).

11.3 Subset Sum by Polynomials

Consider the polynomial

p(x) =

n∏
i=1

(1 + xai).

The coefficient of xt in this polynomial equals c(t). Our plan is to use the DFT to compute the
coefficient of xT in low space. In addition to determining if there is a subset that achieves sum T ,
we will find out how many there are that do.

We will, of course, do this using a Discrete Fourier Transform.

11.4 The DFT and inverse DFT

We now recalling the Discrete Fourier Transform from last lecture, and its inverse. Let ω = e2πi/n.
The DFT is a linear transformation that maps a vector (a0, a1, . . . , an−1) to a vector (y0, . . . , yn−1)

Lecture 11: March 1, 2022 11-3

by setting

yk =

n−1∑
j=0

aj

(
ωk
)j

=

n−1∑
j=0

ajω
jk.

That is, it treats its input vector as the coefficients of a polynomial

p(x) =
n−1∑
j=0

ajx
j ,

and then sets
yk = p(ωk)

for all k.

It is sometimes useful to expres the DFT as multiplication by a matrix. We may evaluate the
polynomial p at a point x0 by forming the vector of powers of x0, and then taking its inner product
with the vector of coefficients of p:

p(x0) =
(
1, x0, x

2
0, . . . , x

n−1
0

)


a0
a1
...

an−1

 .

If we assemble all of those row vectors into a matrix, we obtain

1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ωn−1

1 ω2 ω4 ω6 · · · ω2n−2

1 ω3 ω6 ω9 · · · ω3n−3

...
...

...
...

...
...

1 ωn−1 ω2n−2 ω3n−3 · · · ω





a0
a1
a2
a3
...

an−1


=



y0
y1
y2
y3
...

yn−1


.

Last lecture, we learned an algorithm called the FFT for computing the DFT in time O(n log n)
when n is a power of 2. Today’s lecture will not actually require the FFT. But, we will need the
inverse of the DFT, which is what we use to interpolate the coefficients of a polynomial from its
values.

We saw that we can compute the coefficients of p from its evaluations at powers of ω by the formula

aj =
1

n

n−1∑
k=0

ω−jkyk.

There are two things that you should take away from this. The first is that we can obtain the
coefficient aj by computing the inner product of the DFT of p(x) and the vector with entries
ω−jk. The second is that the computation that inverts the DFT is almost identical to the one that
computes it.

Lecture 11: March 1, 2022 11-4

11.5 Repeated Squaring

For an integer a, we can compute xa while using only O(log a) arithmetic operations: we can
compute x2

i
for various i by repeated squaring, and then multiplying together the appropriate

terms. For example,
x11 = x1x2x8.

In general, we expand a in binary as b0 + 2b1 + 4b2 + · · ·+ 2kbk, then compute

xa =
∏
j:bj=1

x2
bj

by the loop

1. z = x. y = 1.

2. For j in 1 to k

a. If bj = 1, y = y ∗ z.
b. z = z2.

3. Return y.

11.6 Numerics

Because our algorithm is going to be computing potentially large numbers, say up to 2n or nT , and
is going to be taking powers of ω of this order, we need to worry a little about numerical precision.
So, I’ll give a crash course on floating point computation. My favorite reference for this material is
the book by Higham [Hig02]. This is the sort of thing you can learn about in a course on Numerical
Analysis. But we will take a looser approach.

Floating point numbers come in the form

±m2e,

where 0 ≤ m < 2B is an integer, called the significand, and e is an exponent between emin and
emax. For convenience, we will assume emin = −emax. In the standard double-precision float,
emax ≈ 1023 and B = 53. For any number x, we let fl(x) denote the closest floating point number.
For every x between 2emin and 2t+emax ,

|fl(x)− x| < u |x| ,

where
u = 2−B.

Note that some numbers you might expected to represent, like 1/10, can not be exactly represented
in this way. If you play with numerical computation, you will often encounter numbers around
10−16 that are indistinguishable from zero. The reason is that 2−53 ≈ 1.1 · 10−16.

Lecture 11: March 1, 2022 11-5

We will now give a loose approximation of the standard model of floating point computation. We
will make the non-standard assumption that we can choose t and emax for our number system, and
that we will use O(t+emax) bits to represent each number. With this many bits, we can implement
approximations of the basic operations of +, −, ∗, and /, by operations we call ⊕, 	, ⊗, � with
the properties that

fl(x⊕ y) = (x+ y)(1 + δ) for some |δ| ≤ u,

provided that all of x, y, and x+ y are 0 or between 2emin and 2t+emax .

This does not mean that if x+ y+ z = 0, then fl(x⊕ y⊕ z) = 0. The reason is that fl(x⊕ y) will
probably not equal z. Another problem is that you probably won’t be dealing with x, y, and z,
but rather approximations of them. For example, if I try to compute 0.3− 0.1− 0.2 on my laptop,
I get −2.7 · 10−17.

One issue here is the difference between absolute and relative error. We say that x̂ is an ε additive
approximation of x if |x− x̂| ≤ ε. But, floating point is geared towards maintaing relative approx-
imations. We say that x̂ is an an ε relative approximation of x if |x− x̂| ≤ ε |x|. Note that we
should only consider ε < 1/2. We will use the fact that an ε relative approximation of x is an ε |x|
absolute approximation.

We will represent complex numbers z by the real numbers x and y such that z = x + iy. Adding
complex numbers just requires adding the real and imaginary parts. But, multiplying them requires
4 real multiplications and 2 real additions.

To write the running time of these operations, we say that f(n) ≤ Õ(g(n)) if there is some constant
c for which

f(n) ≤ O(g(n) logc g(n)).

This enables us skip writing low order logarithmic terms. All of the elementary floating point
operations, ⊕, 	, ⊗, �, can be performed in time Õ(emax +B).

We can compute complex roots of unity by computing their real and imaginary parts separately by
the Taylor series for sine and cosine. This is not the most efficient way to do it. But, it will suffice for
our crude purposes. I assert that to compute e2πx to ε additive accuracy, we need to compute at most
the first O(log(1/ε)) terms in their Taylor series. This would take time Otilde(log(1/ε)(emax+B)).

Our approach to numerical analysis will be very crude, and would make most Numerical Analysts
scream. But, it will be sufficient for our purposes as getting numerics right is not the point of this
course.

11.7 The Algorithm for Subset Sum

For each 1 ≤ i ≤ n, let pi(x) = 1 + xai . Recall that we can evaluate pi(x) in at most O(log ai)
operations: O(log ai) multiplications to compute xai , and we then add 1.

The following is a description of the algorithm for computing c(T). We will write it in a way that
makes it easy to reason about its space usage.

Lecture 11: March 1, 2022 11-6

1. Set N = nT + 1, and ω = e2πi/N .

2. Set c = 0.

3. For j in 0 to N − 1,

a. Set z = 1 and x = ωj .

b. For k in 1 to n, z = z ∗ pk(x).

c. Set c = c+ z ∗ ω−jT

4. Return c/N , rounded to the nearest integer.

The number c returned at the end of the algorithm equals

c(T) =
1

N

N−1∑
j=0

ω−jT p(ωj),

and thus is the coefficient of xT in the polynomial p, provided we have carried out our computations
to sufficient accuracy.

We will see that it suffices to perform all the calculations with B = Õ(n+ log T) bits of accuracy.
The algorithm keeps all of its storage in 4 variables: j, k, z and c. So, its total space usage is
Õ(n+ log T).

We now work backwards to figure out how much accuracy we need. We need an additive approxi-
mation of c to less than 1/2 absolute accuracy in order to round it to the correct integer. c is the
sum of nT numbers. So, if we approximate each of those to absolute accuracy 1/4nT , then we will
approximate c to within nt/4nT + nTu absolute accuracy. Thus, we want u < 1/4nT .

But, each term z that goes into the sum to construct c can be big. It is a product of n roots of unity
plus 1. Each of these is at most 2, so each term z is at most 2n. To ensure that we obtain 1/4nT
absolute accuracy in each of those, we will compute each term in the product to relative accuracy
2−n/8n2T . For this purposes, it suffices to have u < 2−n/8n2T and thus B ≤ Õ(n+ log(T)).

Finally, we consider how we compute pk(ω
j). As suggested before, we could use the Taylor series to

approximate the root of unity ωjak . To do this to absolute accuracy 2−n/8n2T will take Õ(n+log T)
arithmetic operations on numbers with B ≤ Õ(n+log(T)). To bound the total running time of the
algorithm, we observe that the outer loop has nT iterations, we compute n terms pk(x), and each
of these computations requires time Õ(n+ log(T)). Thus, the total running time of the algorithm
is at most Õ(nTn(n+ log T)) ≤ Õ(n3T).

11.8 Modulo a prime

Instead of worrying about numerics, we could perform these computations modulo a prime. The
most natural way of doing this would first involve discovering a prime P just a little bit larger than

Lecture 11: March 1, 2022 11-7

nT + 1. Using randomized algorithms, we can do this with high probability in time polynomial in
log(nT).

We then need to find a generator of multiplicative group modulo P to use as ω. This is an element
for which ωP−1 = 1, but ωk 6= 1 for 0 < k < P − 1. This implies that ωj varies over all non-zero
numbers modulo P . Again, there are algorithms for doing this quickly (assuming some standard
number theoretic conjectures are true). If we now go through the computation, we will compute
c(T) modulo P . This, however, does not necessarily allow us to determine if c(T) is zero or not: it
could be divisible by P .

Sun-tzu’s Remainder Theorem, formerly known as the Chinese Remainder Theorem, allows us to
solve this problem: we just need to repeat the process with primes P1, . . . , Pq whose product exceeds
c(T).

References

[Hig02] Nicholas J Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

[JVW21] Ce Jin, Nikhil Vyas, and Ryan Williams. Fast low-space algorithms for subset sum. In
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1757–1776. SIAM, 2021.

[LN10] Daniel Lokshtanov and Jesper Nederlof. Saving space by algebraization. In Proceedings
of the forty-second ACM symposium on Theory of computing, pages 321–330. ACM, 2010.

