Algorithms, Lecture 3 on NP :
Nondeterministic Polynomial Time



Problem X is poly time reducible to Y
XY
if can solve X using poly computation and
a poly number of calls to an algorithm
solving Y.

“Up to poly factors, X is at least as easy as Y”
“Up to poly factors, Y is harder than X”



Defined NP:
decision (yes/no) problems
can check certificates for yes answers in ptime

Have poly time proof checkers:
A poly time algorithm A so that
if X(s) = yes,
there exists a w so that A(s,w) = yes, and
if X(s) = no,
for all w, A(s,w) = no

Most problems of form: does there exist w so that
satisfies conditions implied by s?



Last class:

Defined NP-Complete:
1. X € NP, and
2. Xis NP-hard

X is NP-hard if:
1.forallY € NP YS X, or
2. CircuitSat <; X, or
3.Y <, X, for some NP-Hard Y, such as
SAT, Independent Set, Vertex Cover



Last class:

Proved CircuitSAT is NP-Hard.
Proved CircuitSAT <, SAT.
In fact, proved CircuitSAT <, 3-SAT

Where 3-SAT is SAT,
but each clause has at most 3 terms.



Last class:

Proved CircuitSAT is NP-Hard.
Proved CircuitSAT <, SAT.

In fact, proved CircuitSAT <, 3-SAT
Where 3-SAT is SAT,

but each clause has at most 3 terms.
Naturally follows from the construction.



SAT <, 3-SAT, a self-contained proof

A or B is equivalentto Jys.t. (Aory)and (Bory)
So, given a clause with more than 3 terms, like

X, VX, Vx5V X,
Introduce a new variable y, and replace with clauses:

X;VX,Vy and y Vx;V x4



SAT <, 3-SAT, a self-contained proof

A or B is equivalentto Jdys.t. (Aory)and (Bory)

So, given a clause with more than 3 terms, like
X1V X,V X3V X,
Introduce a new variable y, and replace with clauses:

X;VX,Vy and y Vx;V x4

2-SAT isin P



Also possible to force each variable
to appear at most 3 times

Say a variable x appears in k clauses.

Replace x with k new variables, x,, ..., X,
one for each clause in which it appears.

Add clauses
XV X5, X5V X5, e, Xt VX, XV Xy

Only satisfied if all are equal.



Today
Will prove more problems are NP-complete:
3-coloring

Hamiltonian Cycle
Travelling Salesperson Problem



k-Coloring
Given a graph G = (V,E), does there exist

f:vVv—{1,2,.., k} (colors)
So that for all (u,v) € E f(u) #f(v) ?

C>D<”)
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3-colorable Not 3-colorable




k-Coloring

Given a graph G = (V,E), does there exist
f:vVv—{1,2,.., k} (colors)
So that for all (u,v) € E f(u) #f(v) ?

3-colorable Not 3-colorable



k-Coloring is NP-Complete

Clearly in NP, because can check a proposed coloring
To prove NP-hard, will show 3-SAT <, 3-Coloring

Given a collection of clauses C,, ..., C,, each with at
most 3 terms, on variables x,, ..., X,

produce graph G = (V,E) that is
3-colorable iff the clauses are satisfiable



3-Coloring is NP-Complete — variable gadgets

Create 3 special nodes: T, F, B (base),
and one node for each term: x, and’x;

In every 3-coloring, one of x, and x;
is colored T and one is colored F



3-Coloring is NP-Complete — variable gadgets

Create 3 special nodes: T, F, B (base),
and one node for each term: x, and’x;
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In every 3-coloring, one of x, and x;
is colored T and one is colored F



3-Coloring is NP-Complete — clause gadgets

Consider clause x, V x, V X,

s

Claim: 3-colorable iff terms colored to satisfy clause



3-Coloring is NP-Complete — clause gadgets
Claim: 3-colorable iff terms colored to satisfy clause

1. If terms all colored F, then cannot 3-color

T
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3-Coloring is NP-Complete — clause gadgets
Claim: 3-colorable iff terms colored to satisfy clause

2. If some term true, can 3-color
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3-Coloring is NP-Complete — clause gadgets
Claim: 3-colorable iff terms colored to satisfy clause

2. If some term true, can 3-color




3-Coloring is NP-Complete

3-colorable iff
satisfiable
B
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3-Coloring is NP-Complete
T

3-colorable iff
satisfiable




Hamiltonian Cycle:
A cycle in a graph that hits each vertex once.

Directed Hamiltonian Cycle:
same, but in a directed graph



Directed Ham Cycle is NP-Complete

Clearly in NP, because can check if a cycle is
Hamiltonian

To prove NP-hard, will show
SAT <, Directed Ham Cycle

Produce directed graph G = (V,E) that
has Ham Cycle iff the clauses are satisfiable



Start: create graph with 2" Ham Cycles,
then create gadgets to restrict them
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then create gadgets to restrict them
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Start: create graph with 2" Ham Cycles,
then create gadgets to restrict them
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Must go top-to-bottom, and can traverse each row
left-to-right (True) or right-to-left (False)




Start: create graph with 2" Ham Cycles,
then create gadgets to restrict them
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Must go top-to-bottom, and can traverse each row
left-to-right (True) or right-to-left (False)
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Clause gadgets True False

forces traverse first row =)

O ——
1. ZP

N TR o

3‘%; A
sy I /j

Require: no other edges touch vertices in gadget

clause
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Clause gadgets True False
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Clause gadgets True False
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~orces traverse 1 ==, or 24==  Or n ==

Require: no other edges touch vertices in gadget



) E—
Clause gadgets True False

clause

2:O<—>O<—>O

To see must come back to same row,
note that if do not is no Hamiltonian
path through unused down-link



) E—
Clause gadgets True False

clause

Forces traverse 1 ==, or 24=m  Or n =



Ham cycle iff satisfiable True False
traverse in order

B N
indicated by vars,

1: Q4+ P00 PO ROEHO+>04—
picking up each 2:%"0‘_’0‘_30‘_»? RO<+—>C
clause once using 3%

&

some true term.

Pf. If satisfiable,




Ham cycle iff satisfiable True False

B

Pf. If Ham Cycle,
must go top to bot 1.9
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assign vars by directlc;n\ (O /J

if visit each clause node, then is made true by term on row
from which make the visit.




Directed Ham Cycle <, Ham Cycle

1. In directed problem,
answer same if reverse all arrows.

2. To transform to undirected,
replace each vertex v with three vertices:

Replace directed (u,v) edge with (u

in’ Vbase'

out

o000 000



Directed Ham Cycle <, Ham Cycle

—0-0-0—

Claim: If these are only edges to u,,
then in every Hamiltonian cycle
u, must be adjacent to u,,

Proof: if it is not, then once enter u,
can not get out



Directed Ham Cycle <, Ham Cycle
Replace directed (u,v) edge with (u

O-0-0 éiwm
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Directed Ham Cycle in original -> Ham Cycle




Directed Ham Cycle <, Ham Cycle
Replace directed (u,v) edge with (u

@g {00

Lemma:
Every Ham Cycle in the undirected graph must go
in, base, out, in, base, out, in, base, out, etc,
must correspond to a Ham Cyc in directed graph

out
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TSP (Travelling Salesperson Problem)

Given n locations, a distance function d(u,v)
and a total distance D, does there exist a tour
through all locations of total distance at most L?
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http://www.tsp.gatech.edu/usal3509/usa 13509_ini‘6.htm|



TSP (Travelling Salesperson Problem)

Given n locations, a distance function d(u,v)
and a total distance D, does there exist a tour
through all locations of total distance at most L?
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http://www.tsp.gatech.edu/usal13509/usal13509 sol.html



RL5915 optimal solution
An optimal solution for RL5915 is given by the fOIIOWing tour, which has Iength 565530.

http://www.tsp.gatech.edu/rl15915/r15915 sol.html



TSP is NP-complete

Ham Cycle <, TSP

Given graph G = (V,E),
create one location for each vertex,

d(uv)=1if(uyv) € E
2 otherwise

Target distance = | V|

A tour of all locations that returns to start and has
total length |V| must use exactly |V| edges of G



TSP is NP-complete

Ham Cycle <, TSP

Given graph G = (V,E),
create one location for each vertex,

d(uv)=1if(uyv) € E
2 otherwise

This is an abstract distance function.
Satisfies d(u,v) = d(v,u) for all u,v and
d(u,w) <d(u,v) + d(v,w) for all u, v, w



TSP is NP-complete

Ham Cycle <, TSP

Given graph G = (V,E),
create one location for each vertex,

d(uv)=1if(uyv) € E
2 otherwise

This is an abstract distance function.

Remains NP-hard for integer points in plane.



Issue with Planar TSP

If input is locations of points, instead of distances

The problem is not known to be in NP,
because do not know if can compare
distances in polynomial time.

For integers x4, ..., X, integer t, do not have poly
time algorithm to test if

> <



Classic Nintendo Games are (NP-)Hard

Greg Aloupis® Erik D. Demaine’ Alan Guo'*
March 9, 2012

Abstract

We prove NP-hardness results for five of Nintendo’s largest video game franchises: Mario,
Donkey Kong, Legend of Zelda, Metroid, and Pokémon. Our results apply to Super Mario
Bros. 1, 3, Lost Levels, and Super Mario World; Donkey Kong Country 1-3; all Legend of Zelda
games except Zelda 1I: The Adventure of Link; all Metroid games; and all Pokémon role-playing
games, For Mario and Donkey Kong, we show NP-completeness. In addition, we observe that
several games in the Zelda series are PSPACE-complete.
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Figure 4: Variable gadget for Mario Figure 5: Clause gadget for Mario



Candy Crush is NP-hard

Toby Walsh
NICTA and University of NSW, Sydney, Australia

Abstract

We prove that playing Candy Crush to achieve a given score in a fixed number
of swaps is NP-hard.

Keywords: computational complexity, NP-completeness, Candy Crush.




Bejeweled, Candy Crush and other Match-Three
Games are (NP-)Hard

L. Guala', S. Leucci?, and E. Natale®

Universita degli Studi di Roma Tor Vergata
guala@mat.uniroma2.it
2Universita degli Studi dell’Aquila
stefano.leucci@univaq.it
3Sapienza Universita di Roma
natale@di.uniromal.it

March 25, 2014



