Lecture 4 on NP

Today

Will prove more problems are NP-complete:

3D Matching Generalized 3DM Exact Cover Subset Sum Interval Sched with Deadlines and Release Times (ISDR)

Generalized 3DM

Given three sets, A, B, C, |A| = |B| = kand triples T₁, ..., T_n, each with one element of A, B, and C

Do there exist k pairwise disjoint triplets?

Equivalent: disjoint triplets that cover all of A and B.

Gen-3DM is NP-Complete

Clearly in NP, because can check a proposed matching. To prove NP-hard, will show $3-SAT \leq_P Gen-3DM$.

Given an collection of clauses C_1 , ..., C_k , each with at most 3 terms, on variables x_1 , ..., x_n

produce sets A, B, C, and triples S₁, ..., S_m that have matching iff the clauses are all satisfiable

Gen-3DM NP-Complete – variable gadgets

If these are only triples containing inner elements, must cover by all odd or all even triples

Gen-3DM NP-Complete – variable gadgets

If these are only triples containing inner elements, must cover by all odd or all even triples

Gen-3DM NP-Complete – variable gadgets

If these are only triples containing inner elements, must cover by all odd or all even triples

3DM NP-Complete – variable gadgets

For variable x_i in d clauses, create gadget with 2d inner elements:

 $a_{i,1,} a_{i,2,...,} a_{i,d}$ $b_{i,1,} b_{i,2,...,} b_{i,d}$

and 2d outer elements **C**_{i,1,0}, **C**_{i,2,0}, ..., **C**_{i,d,0}, **C**_{i,1,1}, **C**_{i,2,1}, ..., **C**_{i,d,1}

and triples as shown: (a_{i,k}, b_{i,k}, c_{i,k,0}), (a_{i,k+1}, b_{i,k}, c_{i,k,1})

3DM NP-Complete – variable gadgets

Interpret covering inner Interpret covering inner elements by odd sets as false. elements by even sets as true

3DM NP-Complete – clause gadget

Say clause C^j has form $x_1 V \overline{x_2} V x_n$ Create two elements for the clause: a^j and b^j h a **C**_{2,j,0} C_{n,j,1} **C**_{1,j,1}

and create triples with these and terms that satisfy clause : $(a^{j}, b^{j}, c_{1,j,1}), (a^{j}, b^{j}, c_{2,j,0}), (a^{j}, b^{j}, c_{n,j,1}), (a^{j}, b^{j}, c_{2,j,0}), (a^{j}, b^{j}, c_{n,j,1}), (a^{j}, b^{$

3DM NP-Complete – clause gadget

- Say clause Cj has form $x_1 V \overline{x_2} V x_n$
- If these are only triples with the clause elements, must cover by a variable's external element that satisfies clause, and variable gadgets enforce consistency

3DM NP-Complete – clause gadget

Say clause Cj has form $x_1 V \overline{x_2} V x_n$

Each clause gets own external element for each variable

Truth assignment -> choice of triples at variable gadgets. Satisfying -> can choose a triple for each clause gadget.

Disjoint, and cover all of A and B.

Truth assignment -> choice of triples at variable gadgets. Satisfying -> can choose a triple for each clause gadget.

Disjoint, and cover all of A and B.

Cover all internals (A,B) once

-> truth assignment (var gadgets)

Cover all clause internal elements -> satisfies clause

 $x_1 = 1$ $x_2 = 0$ $x_n = 0$