
Design and Analysis of Algorithms January 21, 2016

A Note on Asymptotics
Lecturer: Daniel A. Spielman

Notation

In this class, we will use asymptotic notation to describe the running times of algo-
rithms. This note, and the first problem on Problem Set 1, are intended to help clear
up some common confusions about asymptotics. The most important notion is that
of polynomial time. An algorithm runs in polynomial time if on inputs of size n it
takes time at most O(nk), where k is some absolute constant. Think of k as being 1,
2, or 3. No matter what, k cannot vary with n. Now, for the details. . .

While the standard in asymptotic notation is to write things like f(n) = O(g(n)),
I prefer the notation f(n) ≤ O(g(n)). As explained in Section 2.2 of the book by
Kleinberg and Tardos, we will write f(n) ≤ O(g(n)) if there is a positive constant C
and an integer n0 such that for all n ≥ n0,

f(n) ≤ Cg(n).

I make the same adjustment to the big-Ω notation. I write f(n) ≥ Ω(g(n)) if there is
a positive constant C > 0 and an integer n0 such that for all n ≥ n0

f(n) ≥ Cg(n).

Consider an algorithm that has two parts, the first of which takes time f1(n) and the
second of which takes time f2(n). If f1(n) ≤ O(g(n)) and f2(n) ≤ O(g(n)), then the
entire time of the algorithm, which is f1(n) + f2(n), is also at most O(g(n)).

Claim 1. If f1(n) ≤ O(g(n)) and f2(n) ≤ O(g(n)), then

f1(n) + f2(n) ≤ O(g(n)).

Proof. From the assumptions of the claim, we know that there are positive constants
c1, c2, n1, and n2 so that

f1(n) ≤ c1g(n), for all n ≥ n1, and

f2(n) ≤ c2g(n), for all n ≥ n2.

1



2

Let c0 = c1 + c2 and let n0 = max(n1, n2). We then have that

f1(n) + f2(n) ≤ c0g(n) for all n ≥ n0.

The following property of O-notation is useful when we are analyzing loops. Consider
using it to analyze a loop that is executed h(n) times in which each execution requires
time f(n).

Claim 2. If f(n) ≤ O(g(n)) and if h(n) ≥ 0 for n ≥ 1, then

f(n)h(n) ≤ O(g(n)h(n)).

This is immediate: if there is a C and an n0 such that f(n) ≤ Cg(n) for all n ≥ n0,
then for all n ≥ n0

f(n)h(n) ≤ Cg(n)h(n).

Inequalities

Kleinberg and Tardos give some useful inequalities concerning the big-O notation. In
particular, they tell us

For every b > 1 and every x > 0, logb n ≤ O(nx) (2.8)

and
For every r > 1 and every d > 0, nd ≤ O(rn) (2.9)

But, I don’t think that they do an adequate job of explaining why. I will. We begin
by recalling the fundamental properties of logarithms:

logb 1 = 0 for b > 0 (1)

logb b = 1 for b > 0 (2)

logb x = (log2 x)/(log2 b) for b > 0 and x > 0 (3)

logb(xy) = (logb x) + (logb y) for positive b, x, and y (4)

logb(x
p) = p logb x for positive b and x, and all real p (5)

logb x < logb y for b > 1 and 0 < x < y. (6)

We now prove an elementary inequality about the logarithm that we will use to derive
all the others we need.



3

Lemma 3. For all x > 0, log2 x ≤ x.

Proof. First observe that for 0 < x ≤ 1, log2 x ≤ 0 < x. Similarly, for 1 < x ≤ 2,
log2 x ≤ 1 < x. We will now prove that for every non-negative integer k and every x
such that 2k < x ≤ 2k+1, log2 x < x. We will prove this by induction on k, having
already established the base case when k = 0. For k ≥ 1, and 2k < x ≤ 2k+1, we
know that 2k−1 < x/2 ≤ 2k. So, we can apply the inductive hypothesis to x/2. This
gives

log2 x = 1 + log2(x/2) < 1 + x/2 < x,

where the first inequality follows from the inductive hypothesis and the second follows
from x > 2k ≥ 2.

On page 41, Kleinberg and Tardos say that for every n ≥ 1 log n ≤ n. One should
be careful to specify the base of the logarithm when making such statements, as they
are not true for all bases. It seems to me that logb x ≤ x for all x for all b greater
than some number close to 1.445. I’m not quite sure what that number is.

We will now use Lemma 3 to derive strengthening of (2.8) and (2.9). We begin with
a seemingly weaker statement.

Lemma 4. For every c > 0 there is an n0 so that for all n > n0,

log2 cn ≤ n. (7)

Proof. We know from fact (4) and Lemma 3 that

log2(cn) = log2(2c) + log2(n/2) ≤ log2(2c) + n/2.

So, if log2(2c) ≤ n/2, then (7) holds. This implies that is suffices to set n0 =
2 log2(2c).

Lemma 5. For every b > 1 and p > 0, there is an integer n0 so that for all n > n0,

logbn ≤ np. (8)

Proof. We prove the lemma by applying a change of variables. If we set x = np, so
n = x1/p, then we need to show that for sufficiently large x

logb x
1/p ≤ x.

Using facts (3) and (5) we can show

logb x
1/p = (log2 x)/(p log2 b). (9)



4

So, it suffices to show that for sufficiently large x

log2 x ≤ (p log2 b)x.

Setting y = (p log2 b)x, this is equivalent to showing that for y sufficiently large

log2(y/p log2 b) ≤ y.

Lemma 4 tells us that this holds for all y larger than some constant, so (9) holds for
all x larger than some other constant and (8) holds for all n larger than yet another
constant.

We now derive a strengthening of (2.9).

Lemma 6. For every r > 1 and every d > 0, there is an integer n0 so that for all
n > n0,

nd ≤ rn. (10)

Proof. Taking logarithms base 2, this is equivalent to saying that for all n > n0,

d log2 n ≤ n log2 r,

which is equivalent to
log2 n ≤ n(log2 r/d).

Setting x = n(log2 r)/d, this becomes equivalent to

log2 (x(d/ log2 r)) ≤ x.

Lemma 4 tells us that this holds for all sufficiently large x, which implies that (10)
holds for all sufficiently large n.


