
Intensive Algorithms Lecture 24

Randomized Perfect Bipartite Matching

Lecturer: Daniel A. Spielman April 19, 2018

24.1 Introduction

We explain a randomized algorithm by Ashish Goel, Michael Kapralov and Sanjeev Khanna for
finding perfect matchings in regular bipartite graphs. The paper, entitled “Perfect Matchings in
O(n log n) Time in Regular Bipartite Graphs”, appears in the SIAM Journal of Computing, 2013.

Recall that a graph is regular if every vertex has the same degree. It is easy to show that every
regular bipartite graph has a perfect matching. This paper presents an incredibly simple algorithm
for finding one. On a graph with n vertices and m edges, the algorithm finds one in expected time
O(n log n)!

Yes, you read that correctly. The running time does not depend on the number of edges present
in the graph. At first this sounds absurd. After all, one should have to read the entire input. In
general, that is true. In this case, the running time bound holds as long as the graph is provided in
the correct format. What the algorithm needs is a list of the neighbors of every vertex, and this list
needs to be presented in such a way that the algorithm can choose a random neighbor of a vertex.
Given these lists, the algorithm runs in the stated time.

Note that this is much faster than the maximum matching algorithm we previously derived from
the Ford-Fulkerson algorithm, which takes time O(nm). But, the new algorithm can actually be
understood as a randomized version of Ford-Fulkerson. Keep in mind that the new algorithm only
works for bipartite regular graphs, whereas the algorithm we saw before finds maximum matchings
in any bipartite graph.

24.2 Perfect Matchings in Bipartite Graphs

To begin, let’s see why regular bipartite graphs have perfect matchings. Let G = (X ∪ Y,E) be a
d-regular bipartite graph with |X| = |Y | = n. Recall that Hall’s matching theorem tells us that G
contains a perfect matching if for every A ⊆ X, |N(A)| ≥ |A|. We will use this theorem along with
some elementary counting to prove that G has a perfect matching.

Theorem 1. If G = (X ∪ Y,E) is a regular bipartite graph, then |N(A)| ≥ |A| for every A ⊆ X.

Proof. Let d be the degree of every vertex in G. As every vertex in A has degree d, there are d |A|
edges touching vertices in A. Similarly, there are d |N(A)| edges touching vertices in N(A). As

24-1

Lecture 24: April 19, 2018 24-2

every edge touching a vertex in A must also touch a vertex in N(A), we have

d |A| ≤ d |N(A)| ,

which implies |A| ≤ |N(A)|.

24.3 Review of Ford-Fulkerson

We now review how the Ford-Fulkerson algorithm can be applied to find maximum matchings in
bipartite graphs. Let G = (X ∪Y,E) be a bipartite graph between two vertex sets, X and Y , both
of size n. To construct a maximum flow problem, we append two additional vertices, s and t, and
add directed edges from s to every vertex in X and from every vertex in Y to t. We also direct
every edge in E from X to Y . We now try to find a maximum flow in the new graph, taking all
edge capacities to be 1.

(a) A bipartite graph

ts

(b) The graph of the directed flow problem.

Let M ⊆ E be a matching in the graph. It corresponds to a flow that sends one unit from s to
x, from x to y, and from y to t for every edge (x, y) ∈ M . So, the residual graph of this flow
reverses the directions of all the edges in the matching, and of all the edges between s and t and
the matched vertices. Recall that the Ford-Fulkerson algorithm increases the flow by finding an
augmenting path—a path from s to t in the residual graph. Such a path will never use one of the
edges between s and a matched vertex, as it goes the wrong way. The same holds for the edges
between t and the matched vertices. So, let’s just ignore those edges.

Now, let P be a path from s to t in the residual graph. When we add a flow of 1 along it, it has
the effect of adding to the matching every edge in E ∩ P that was not in M , and removing from
M every edge of E ∩ P that was in M , as you can see in the figure below.

24.4 The Randomized Algorithm

When we first saw Ford-Fulkerson, we found augmenting paths by running BFS from s. In the
randomized algorithm, we will find them by taking random walks in the residual graph from s. We

Lecture 24: April 19, 2018 24-3

(c) The original match-
ing

1

s t

1

1

1

1

(d) The residual flow graph with a unit flow from s
to t.

(e) The updated
matching

stop the random walk when it gets to t. The one caveat is that we never return to s: whenever
the walk is at X it steps to Y . If there is an edge from that vertex in Y to t, it takes it. If not, it
walks along a back edge back to X.

That is, we imagine a bug that begins at s. At each step, it follows a random edge leaving its
present vertex, but never returning to s. It stops when it reaches t. We let P be the path of edges
that it follows. If we do this in the residual graph, we will find a path from s to t. It is possible
that some vertices will appear twice on this path. But, that is easy to deal with: just remove the
cycles from the path to make it a simple path.

We will show that the expected length of the path will be short. The length of the path we find
will be 3 plus two times number of back-edges its follows. So, it will suffice to bound the expected
number of back-edges in such a path. In particular, we will prove the following theorem.

Theorem 2. Let G = (X ∪ Y,E) be a regular bipartite graph, let M be a matching containing k
edges, and let GM be the residual graph of the corresponding flow problem. The expected number of
back edges appearing in the random walk is at most

n

n− k
− 1.

This means that early on in the algorithm we take very few steps. If the present matching has
fewer than n/2 edges, we expect to follow at most one back-edge!

Theorem 2 tells us that the expected number of steps we need to turn a matching of size k into
one of size k + 1 is at most

2 + 2
n

n− k
.

As we can sum expectations, we find the that expected number of steps required to go from a
matching of size 0 to one of size n is at most

n−1∑
k=0

(2 + 2
n

n− k
) = 2n+ 2n

n∑
i=1

1

i
.

Lecture 24: April 19, 2018 24-4

The summation in this last expression is one that we frequently encounter. It is called the nth
Harmonic number, and is known to approach γ + lnn, where γ = 0.577215 · · · is Euler’s constant.
For our purposes, we just require the fact that

n∑
i=1

1

i
≤ 1 + lnn.

An easy proof of this comes from

n∑
i=2

1

i
≤

∫ n

x=1

1

x
dx = ln(n).

Returning to the main story, we conclude that the expected number of steps in all the augmenting
paths used to construct a perfect matching is at most

2n+ 2n(1 + lnn) = O(n log n).

So, the algorithm takes expected time O(n log n).

24.5 Analysis of the random walk

We now prove Theorem 2. Assume that every vertex of G has degree d. Let XM and YM denote
the matched vertices in X and Y respectively. Also let XU and YU denote the unmatched vertices.
For any vertex y ∈ Y , let M(y) be the vertex in X with which it is matched.

For each vertex v, let b(v) denote the expected number of back-edges used in a random walk from
v that stops when it reaches t. Our goal is to prove an upper bound on b(s). We are going to do
this by establishing relations between the values of b(v) for various values of v, and then combining
these relations. To be sure that we do not get garbage when we subtract one of these expectations
from another, we should be careful to check that b(v) is finite for all v. We verify this below in
Theorem 3.

As the walk first moves from s to a random neighbor of s, which is a random node in XU ,

b(s) =
1

n− k
∑
x∈XU

b(x).

For y ∈ YU , the only edge leaving y points to t. So in this case b(y) = 0. On the other hand, a
vertex y ∈ YM has one edge leaving it, and it goes to M(y). So,

b(y) =

{
0 y ∈ YU ,
1 + b(M(y)) y ∈ YM .

A vertex x ∈ XU has d edges leaving it, all pointing to different vertices in Y . The expected number
of back-edges in a walk from x will be the average of the expected number of back-edges in a walk

Lecture 24: April 19, 2018 24-5

from a random one of its neighbors. So, for x ∈ XU ,

b(x) =
1

d

∑
(x,y)∈E

b(y) =⇒ db(x) =
∑

(x,y)∈E

b(y).

A vertex x ∈ XM only has d− 1 edges leaving, as it is attached to one back-edge. So, for such an
x we have

b(x) =
1

d− 1

∑
(x,y)∈E−M

b(y) =⇒ (d− 1)b(x) =
∑

(x,y)∈E−M

b(y).

Now recall that for (x, y) ∈M , b(y) = 1 + b(x). By adding b(x) to both sides, we find

db(x) = −1 +
∑

(x,y)∈E

b(y).

By summing these equations for b(x) over all x ∈ X, we obtain

d
∑
x∈X

b(x) = −k +
∑
x∈X

∑
(x,y)∈E

b(y)

As each vertex y ∈ Y is attached to d vertices in X, this equals

−k + d
∑
y∈Y

b(y),

Plugging in our formulas for b(y), we find∑
y∈Y

b(y) = k +
∑

x∈XM

b(x).

So,

d
∑
x∈X

b(x) = −k + dk + d
∑

x∈XM

b(x),

which gives

d
∑
x∈XU

b(x) = (d− 1)k

and

d(s) =
1

n− k
∑
x∈XU

b(x) =
(d− 1)k

d(n− k)
≤ k

n− k
=

n

n− k
− 1.

24.6 The expected length is finite

We now show that if the algorithm has not finished then b(v) is finite for every v. At least, we prove
this for connected graphs. We do not need to prove it for disconnected graphs, for two reasons.
First, we could partition the graph into connected components and then find the bipartite matching
in each component Second, we could instead prove that the algorithm works by showing that b(v)
is finite for every v that is reachable from s, and then just use those v in the analysis. This is a
good thing, because when the graph is disconnected there can be vertices v that can not reach t!
Here is an example:

Lecture 24: April 19, 2018 24-6

(f) A bipartite
graph

ts

(g) The graph of the directed flow
problem.

(h) A matching
in the graph

ts

(i) The residual graph. The bottom
vertices have no path to t, but are
unreachable from s.

Theorem 3. While k < n, b(v) is finite for every v ∈ X ∪ Y .

Proof. Let H be the graph of the corresponding flow problem, let f be the flow corresponding
to M , and let Hf be the residual graph. In Theorem 4 we show that there is a path from every
v ∈ X ∪Y to t in Hf that does not go through s. As such a path can use at most n−1 back-edges,
there is a non-zero probability that we reach t after using n− 1 back-edges. Let p be the minimum
over every vertex v ∈ X ∪ Y of the probability that the walk started from v reaches t after using
n−1 back-edges. As p > 0, the expected number of back-edges that we must follow before reaching
t from any vertex is at most (n − 1)/p. That is, the expected number of times we must follow a
path of n− 1 back edges is at most 1/p.

Theorem 4. Let G = (X ∪ Y,E) be a connected d-regular graph and let M be a matching in
G of size less than n. Let H be the graph of the corresponding flow problem, let f be the flow
corresponding to M , and let Hf be the residual graph. Then there is a path in Hf that does not go
through s from every vertex to t.

Proof. Let XB be the (possibly empty) subset of verties in X that do not have a path to t, and let

Lecture 24: April 19, 2018 24-7

YB be the analogous subset of vertices in Y . As every unmatched vertex in Y has a direct path to
t, all of the vertices in YB must be matched.

For each vertex v that is matched, let M(v) denote its match. Each matched vertex y has exactly
one out-going edge in Hf , and it goes to M(y). So, y ∈ YB if and only if M(y) ∈ XB. This tells us
that |YB| ≤ |XB|.

On the other hand, all of the edges leaving an x ∈ XB must go to a vertex in YB. That is
N(XB) ⊂ YB. Theorem 1 now tells us that |YB| ≥ |XB|. Thus, we can conclude that |YB| = |XB|,
and that all of the edges touching vertices in XB end at vertices in YB, and vice versa. As the
graph is connected, this implies that either YB = ∅ or YB = Y . As we assumed that the size of the
matching was less than n, it must be that YB, and thus XB, is empty.

To see that there is a path from s to t, note that there must be some unmatched vertex in X, and
so s has an edge poining to it in Hf .

24.7 Conclusion

I recommend that you read the history section of the paper. You will be shocked by the more
complicated approaches were tried and by how long it took to obtain this result. It is a nice
reminder that there remain untried, simple ideas that can result in substantial scientific progress.

