10/7: Frdos-Renyi Graples Tuesday, October 17, 2006

Random graphs,
Specify n= #vertices
P= Probot edge

For each i < j, include edge (i.j)
with prob P, rude pendently for
each edge.

Let G(u,p) degok this distribution.

We will see that the following phenonena hold with high probability

P	property
Z	disconnected, small tree-lite composents
> (3 connected component on const free of vertices
< (n(n)	isolated vertizes
>lu(a)	Connected
Ln K	neighborhoods of most vertices trees to depth #/z

First, expect (2)p edges,

So for P=ti, expect \(\frac{1}{2}\) edges--

$$R-[X_i=0]=l-P_i$$
.

$$Pr \left[X < (f \delta) \mu \right] c e^{\frac{-\delta^2 \mu}{2}}$$

$$Pr \left[X > (f \delta) \mu \right] c e^{\frac{-\delta^2 \mu}{2}}$$

Ex. creak a workle to each potentrel edge

$$X = total # edges$$

 $p = h, \mu = \frac{h(u-1)}{2} \cdot p = \frac{h-1}{2}$

$$R \left[\left| \text{#edges} - \mu \right| > \frac{n}{6} = \frac{1}{3}\mu \right] 42e^{\frac{-\mu}{24}}$$

$$= 2e^{\frac{-n-1}{54}}$$

for n big, is exceedingly small.

So, certal # edges tightly concentrated around p(2).

So, if
$$k = (2+\epsilon)(g_2n+1)$$
, $P = \frac{1}{2}$

$$P^{\frac{k-1}{2}} = (\frac{1}{2})(g_2n) - (1+\frac{\epsilon}{2})$$
and $NP^{\frac{k-1}{2}} = N^{-\epsilon}$

So, $E(\# \text{cliques}) = N^{-\epsilon}$

So, $E(\# \text{cliques}) = N^{-\epsilon}$

$$E(\# \text{cliques}) = N^{-\epsilon}$$

$$E(\# \text{cliques}) \leq N^{-\epsilon}$$
of $P = E(\# \text{cliques}) \leq N^{-\epsilon}$

as $N \to \infty$

On other hand, for
$$p=\frac{1}{2}$$
 $k = 2 lg_z u + 3$

Can show $E[\# k - cliques 3 > 1]$

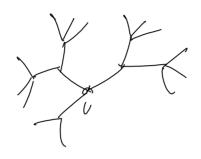
and, one probably exists

(vert becture)

Tree-like to dophing

Graph looks like tree coround vertet v
if is no cycle of length = ktl

contreming v.



Let's show that at most vertices looks like two to depth \$\frac{1}{2}\$ if P < n where $P < \frac{1}{2}$ \quad \text{2} \text{2} \quad \text{2}

Corent expected # of E-cycles.

A t-cycle is specified by
first vertex, second, third,...

but, have over-counted 21 times.

So F_[# k-r/loc] = n(h-i)--(h-k+i) nk

$$\leq \frac{n^{k}p^{k}}{2k} \leq \frac{n^{-k}}{2k} \leq \frac{n^{-k}}{2k}$$

So, Pr[more than n' verts in t-Gree]

or Ro I note than & veits in t-90634 nº

Chronatiz #, X(G)

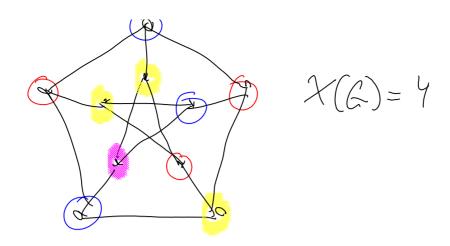
X(G) is the least to sit. the

vertires can be divided upo

to classes with edges only

going between classes.

Et. it Biparte, X(G)=2



Thin (Erdos)

HK, X, Ba sceph G with no K-cycles that has $X(G) \ge X$,

Pf. Consider $P = \frac{1}{D}$

Le shoued Pr[Ghas > = t-cycles] < nº

If are at most = t-cyles, remove a vertex from each,

to get a gradian 2 vertres with

no E-Cycles.

Would like to say

X(G) = X(G)

but that's feelse.

Insted, consider x(G), the redependence #of G

= max { Isl: Hunes (un) & E}

Have $d(G) = \frac{n}{\chi(G)}$, by considering largest class.

We have L(G) 2 L(G)

Now $Pr[A(G) \ge r] \le E[\# \text{ind sets liter}]$ $\le \binom{n}{r} \binom{r-p}{2}$ $\le n^r e^{-\binom{r}{2}p}$ $= \binom{n}{r} e^{-\binom{r}{2}p}$

 $-P\left(\frac{\Gamma-1}{2}\right)$

For
$$P \ge \frac{6x \ln n}{n}$$
, $t \ge \frac{1}{2}n$

$$\frac{-P(r-1)}{n} = ne$$

$$= n$$

If
$$\chi(G) \ge \frac{n}{2x}$$
, $\chi(G') \ge \frac{n}{2x}$

$$\chi(\mathcal{L}) \geq \chi$$

In our case,
$$p = \frac{f \epsilon}{n}$$

