10/24: Giant Component

Tuesday, October 24, 2006 1:07 PM

Erdos-Renyi
If
$$P = (1 \in 2)^n$$
, then $\exists c_1 st f$.
(1) $P \sim E G(n, p)$ has component larger than $C(gn) \xrightarrow{n \to \infty} 0$
If $P = (1 + 22)^n$ then $\exists c_2 st f$.
(2) $R \sim E G(n, p)$ has composed larger than $C_2n \xrightarrow{n \to \infty} 1$
Will first show $\exists c_3 st f$.
(3) $R \sim E G(n, p)$ has composed larger than $C_2n \xrightarrow{n \to \infty} 2$
 $Large$

Will use percolation on trees.

I'll tell you result for to any tree
For
$$P^{2} \neq Rr[3 \mapsto conponent] = 0$$

For $P = \frac{(1+2)}{E} Rr[3 \mapsto conponent] + C(E)$

where
$$C(\varepsilon)$$
 is a constant depending on ε ,
not ε .

This will be in Problem Set 3.

Let's lost at this as a breaching process.
For each vertex, its # of children has distribution

$$B(n,p)$$
: binomized with probability p
if $x \neq B(n,p)$ then $P_n[x=i] = {n \choose i} p^2 (1-p)^{n-2}$

= Trob flipping in p-brased cans gives "heads" i times
So, label root node 1, ad let it have X, children,
numbered 2,..., X₁+1. Then, pict node 2, let it have
X₂ child ren, etc.
So, node X; has i children, Xi = B(n, P), if
there is a node
$$\hat{z}$$
.
Percolation => this process going an forever, and
finite => this process going an forever, and
finite => this process terminating
We now know if $P \ge \frac{1+\varepsilon}{n}$, R-I goes forever $\ge c(\varepsilon)$
As a statement just about rendom variables,
this, says if
Xi, Xi,... is a seq, each from B(n, P)
Then Pr [Hi, X, t...+Xi = i] = c(\varepsilon)

At time t = 1, pict the last numbered (or arbitrary)
active vertex. Set all of its tibes active, adep
and proclaim it to be retired.

Usen no active nodes remain, stop
let T be # of steps = size of composit al node 1.

let X; = # of adapt the of node considered at time 2.
Y; = # retired anactive nodes at short of time i
Claim: Xi = B(n-Ai, p)

because are n-A: askep nodes at this time,
have a probability p of each being a nor.

Moreover, Xi is independent of Xin., Xi-1
because edges from node considered at time i
are independent of edges from previously considered
nodes.

Mow, for Yi =
$$\left(\frac{s}{1+2s}\right)n$$
,
 $p_2(1+c)(n-Y_1)$

So, for i: Y: = $\left(\frac{s}{1+2s}\right)n$, (an apply analysis of
Branching process to say is prob > C(2)
that branching process continues forever.

Hore, it anit go forcer, bet it teaps going
units $p_2(1+c)(n-Y_1)$ is violated.

So, $P_n[\exists i: Y_i = \left(\frac{s}{1+2s}\right)n] = C(s)$

=> Re[cannoted 1 hore at least $\left(\frac{s}{1+2s}\right)^n$ under $j \ge C(z)$

$$C_2 = \frac{\varepsilon}{1+2\varepsilon} \qquad C_3 = C(\varepsilon)$$

< ·

Ju terms of random variables, we have

$$X_i \leftarrow B(n - \sum_{j \leq i} X_i - 1, p)$$

And, for $\sum_{j \leq i} X_i - 1 \leq C_2 n$, we use
 $P_r [\exists i : X_i^{\dagger} + \dots + X_i^{\dagger} \leq 2] \leq l - C(E)$
where $X_i^{\dagger} \leftarrow B((l - C_2)n_1 p)$
As, in this case, $P_r [X_1 + \dots + X_i \leq i] < P_r [X_i^{\dagger} + \dots + X_i^{\dagger} < i]$,
we set.

Proving #1 : if
$$P = (\frac{1}{2})$$
 d1 conjuncts
have size $\leq C_1 \lg n$ for some C_1

First, re- etamine percolation using Cherrott bound.

Recall: if
$$X_{1,...,X_{E}}$$
 are $O(1 - valued random variables)$
 $X = \Xi X_{1,...,X_{E}}$ $\mu = E[X_{3,...,X_{E}}]$ then $U = U = \frac{-\delta^{2} \mu}{2}$
 $P_{r} [X = (1+\delta)\mu] \leq e^{-\frac{\delta^{2} \mu}{2}}$

So, if
$$Y_{1,...}, Y_{t} \leftarrow B(n,h)$$

Then $Y = ZY_{t}, P = ELY_{s}$
 $R = [Y = (H \circ f)P_{s}] < e^{-\frac{5^{2}H}{3}}$

Breaching process dies if
$$Y_{1}t...+Y_{t} \neq t$$
 for some t .
But, $\operatorname{Rr}[Y_{1}+..+Y_{t} \geq t]$ is small for $P=\frac{(I+\epsilon)}{n}$,
as $\mu[Y] = (I-\epsilon)t$, so
 $\operatorname{Rr}[Y_{1}+..+Y_{t} \geq t] = \operatorname{Rr}[Y_{1}+..+Y_{t} \geq (\frac{1}{2})h]$
For $\delta = I - \frac{1}{1+\epsilon} = \frac{\epsilon}{1-\epsilon}$
 $\leq e^{-\frac{(\epsilon-\epsilon)^{2}}{3}I_{t}}$
 $= \left(e^{-\frac{\epsilon^{2}}{3}(1+\epsilon)}\right)^{t} \longrightarrow 0$

ji -

In porticular, for
$$t = C_1 \ln n$$
, where
 $C_1 = 2 \cdot \frac{3(1 \cdot \epsilon)}{\epsilon^2}$
 $\leq \frac{1}{n^2}$

Returning to our graph process,
we find
$$PrEcomp$$
 of wade 1 has $\geq C_{1}$ han nodes}
 $\leq \frac{1}{n^2}$

Could do for composit of any node, so

$$R_{n} [any composit 2 C, lynn nodes] = \frac{1}{n}$$

Proving #2.
Let
$$P(G) = Size d lagest connected component
uts $H = 20$ if $P = \frac{(4 \times 2)}{n}$, $\exists c_2 \ S.t$.
 $P_{N} [P(G) = c_{2N}] \xrightarrow{n \to \infty} 0$
Again, consider our sequence $Y_{i_1,i_{2,1}}$...
will show that, given that grow to some size,
is very unlitely die out.
First, note $P_{n}[Y_{1} + H_{2} = t]$
 $\left(E[Y_{1} + H_{2} + t] + (1 + t) + t] = (1 + t) + t = t \right)$
 $= P_{n}[Y_{1} + H_{2} + t] + (1 + t) + t = t]$
 $I = P_{n}[Y_{1} + H_{2} + t] + (1 + t) + t = t]$
 $I = e^{-\frac{S^{2}(1 + t)}{1 + t}} + \frac{S}{1 + t} = e^{-\frac{S^{2}(1 + t)}{1 + t}} = e^{-\frac{S^{2}(1 + t)}{1 + t}}$
 $So, for t suff lagge $\rightarrow 0$
Similarly, $P_{n}[\exists t \ge t_{0} : Y_{1} + H_{1} + t] = \frac{S^{2}}{1 + t} + \frac{S^{2}}{1 + t} = \frac{S^{2}}{1 + t} = \frac{S^{2}}{1 + t} + \frac{S^{2}}{1 + t} = \frac{S^{2}}{1 + t} = \frac{S^{2}}{1 + t} + \frac{S^{2}}{1 + t} = \frac{S^{2}}{$$$$

Graphs and Networks Page 6

$$\rightarrow 0$$

In feet, for
$$to = C_4 lun, L_{D^2}$$

Now, to return to Graphs modify our
earlier process so that when are skill
sleeping nodes, but none active, we pict
an arbitry are to wate up.
Unat can happen?
(bard fund composite of size
$$L$$
 to = Culum
But, prob of this $L^{1}C(E)$,
So change find $2\ln(n)/c(E)$ composets this size
 $\leq (1-C(E))^{2n(m)/c(E)} \leq e^{-2hm} \leq \frac{1}{n^{2}}$,

so unlitely,

Chance fund composit of size between to and Cn where $C = \frac{\varepsilon}{1+\varepsilon}$ is also small:

Set $Z_t = Y_1 + Y_t$ $P_r \left[\exists t : t_0 \leq t \leq c_n \ \exists t_{t_1} \leq t_{t_2} \leq t_{t_1} + Y_t \leq t_{t_2} \right]$ $= \frac{P_r \left[(\exists t : t_0 \leq t \leq c_n \ \exists t_{t_1} < t_{t_1}) \land (\exists t_{t_1} \geq t_{t_1} + t_{t_2} < t_{t_1} + t_{t_2}) \right]}{D \left[T_{T_1} = Y_t \quad f_{t_1} + f_{t_2} \right]}$

Graphs and Networks Page 7

Pr[Zzzt fon teto] E Pr[Zt = to stern Zt ct]
Pr[Zt = to 3 $\angle \frac{\sqrt{n^2}}{C(\epsilon)} \stackrel{\perp}{=} \frac{1}{C(\epsilon)n^2}$

 $\underline{ }$