
Graphs and Networks Lecture 15

The Giant Component

Lecturer: Daniel A. Spielman October 26, 2006

15.1 Probability Technicalities

I’d like to begin this lecture by getting some technicalities out of the way. These technicalities will
allow us to apply bounds for independent random variables to variables which are not evidently
independent.

The key issue I’d like to address is how we sample a graph from the distribution G(n, p). The most
obvious way is to create a collection of independent random variables Xi,j for each i < j such that

P [Xi,j = 1] = p, and P [Xi,j = 0] = 1− p.

We then say that edge (i, j) appears in the graph if Xi,j = 1.

But, we will consider a fancier approach to sampling that yields the same distribution. In particular,
we will create a collection of independent random variables Xi,j for all i 6= j. This is twice as many
variables as we need, so we will only use one from each pair (Xi,j , Xj,i). We will then choose
pairs (i, j) in some order, choose only one of Xi,j or Xj,i to examine, and then use the variable we
examined to decide whether or not edge (i, j) should appear in the graph.

One way of visualizing this process is to think of building the adjacency matrix one step at a time.
Initially, we view the adjacency matrix as being filled with the symbol “?”. At each step, we choose
some (i, j) for which A(i, j) =?, examine one of Xi,j or Xj,i, and set A(i, j) to 0 or 1 accordingly.

Even if we choose which pair (i, j) to examine based on the variables examined previously, we still
sample a graph from G(n, p). In particular, I assert that if we choose the first pair (i, j) to examine
before examining any of the variables, and then choose each consecutive pair (i, j) without ever
having looked at Xi,j or Xj,i, then the procedure samples a graph from G(n, p). This should be
obvious. If it is not, just observe that since we only ever look at one of Xi,j or Xj,i, the algorithm
would behave exactly the same if they were equal.

When we process vertex π(i), we look at every j for which Ai,j =?, and set Ai,j = Aj,i = Xi,j . We
do not change the entries if Ai,j ∈ {0, 1}.

The actual procedure that we will consider is just slightly fancier. In this procedure, we will
generate variables Xi,j for all i and j, During the course of the procedure, we will generate an
ordering on the vertices, which is represented by a permutation π on {1, . . . , n}. We initially set
π(1) = 1. At the ith step, we set Aπ(i),x for all x such that Aπ(i),x =?. We do this by setting
A(π(i), x) = A(x, π(i)) = Xi,x. We then put all such nodes x for which Xi,x = 1 into the ordering.
That is, if we have defined π(1), . . . , π(k), we then define π(k + 1), . . . , π(k + j) to be the j vertices

15-1



Lecture 15: October 26, 2006 15-2

for which A(π(i), x) was ? but becomes 1. If at the ith step π(i) has not yet been defined, we define
π(i) to be the least index y for which the yth row of A contains a “?”. That is, the least y for
which there is not yet a j such that π(j) = y.

The only essential difference between this procedure and the one we considered before is that the
variables Xi,j are used to determine edges from π(i), rather than from i. But, as we only ever
examine one of Xi,j and Xj,i, this procedure still samples from G(n, p).

Let me point out that this procedure is both Breadth First Search, and the “asleep-active-retired”
process that I defined last class. In this terminology, a vertex y is asleep if there is no j such that
π(j) = y (which is when the yth row of A contains a ? and no 1’s). A vertex y is retired if π(j) = y,
and we are on step i > j (which is when no entry of the yth row of A is ?). A vertex y is active if
there is an i for which π(i) = y, but we have not yet reached the ith step.

15.2 Before Percolation

I’ll now briefly make rigorous the proof that if p = (1− ε)/n, then for

c1 =
6(1− ε)

ε2
,

the probability that there is a component of size more than c1 lnn is at most 1/n. We do this by
examining the component of vertex 1, following the procedure described above. The size of the
component of vertex 1 is equal to one minus the least t for which π(t) was not defined at the start of
step t. Let Yi be the number of edges introduced between the vertex π(i) and asleep nodes at step
i. This is the number of vertices added to the ordering at step i. Then, the size of the component
of vertex 1 is equal to the least t such that

Y1 + Y2 + · · ·+ Yt < t.

Let Y ′
i =

∑
j Xi,j . Then, Yi ≤ Y ′

i . So,

P [Y1 + · · ·+ Yt ≥ t] ≤ P
[
Y ′

1 + · · ·+ Y ′
t ≥ t

]
.

As Y ′
1 , Y

′
2 , . . . , Y

′
t are independent, we may apply the bound from the previous class:

P
[
Y ′

1 + · · ·+ Y ′
t ≥ t

]
. ≤ e

−ε2t
3(1−ε)

to prove the result.

Having proved a probability bound of 1/n2 for the component of vertex 1, we obtain an upper
bound of 1/n by considering the component of every vertex.

15.3 Giant Component, first attempt

On the problem set, you will prove that in the infinite k-ary tree with edge probability p = (1+ε)/k,
there is a constant cε so that the probability that the origin is connected to a leaf is at least cε.
Moreover, cε is independent of k.



Lecture 15: October 26, 2006 15-3

From the relation between percolation and branching processes discussed last class, this implies
that if Y1, Y2, . . . is a sequence of variables with distribution B(k, (1 + ε)/k), then the probability
that there is a t for which Y1 + · · ·+ Yt < t is at most 1− cε.

We will use this now to show that if p = (1 + 2ε)/n, then the probability that vertex 1 is in a
component of size at least εn/(1 + 2ε) is at least cε. Let me begin with the intuitive argument.
Let Si be the number of nodes that are asleep at the beginning of step i. Then, Yi is distributed
according to B(Si, p), which is to say it is the sum of Si 0/1-random variables with probability p of
being 1. If Si ≥ n− εn/(1 + 2ε), then p ≥ (1 + ε)Si. So, we know that the probability that there is
a t ≤ i for which Y1 + · · ·+ Yt < t is at most 1− cε. On the other hand, once Si < n− εn/(1 + 2ε),
we have seen at least active variables εn/(1 + 2ε), which provides our giant component.

There are only two issues with making this argument complete rigorous:

(a) As Si depends on Y1, . . . , Yi−1, we cannot really say that Yi is independent of Y1, . . . , Yi−1,
and

(b) there’s also something fishy about running the arguement up to the point where Si < n −
εn/(1 + 2ε), when we don’t know what that i will be in advance.

Both of these issues can be made to dissappear using tricks like those from the first section. For
those who really care, I’ll outline how. At step i, instead of assigning A(π(i), x) = Xi,x, we let
ρ(x) be the index of the xth smallest asleep node, and set A(π(i), x) = Xi,ρ(x). So, the variables
Xi,1, . . . , Xi,Si are the variables that are used at this step.

We then set Y ′
i = Xi,1 + · · ·+ Xi,n(1−ε/(1+2ε)). Let γ = ε/(1 + 2ε). Then, each Y ′

i has distirbution
B((1− γ)n, p), and they are all independent. So, we know that the probability there is an t < γn
for which Y ′

1 + · · ·+ Y ′
t < t is at most 1− cε. On the other hand, for all t such that St ≥ n− γn,

Yt ≥ Y ′
t . So, if Y ′

1 + · · · + Y ′
t ≥ t for all t < γn, then Y1 + · · · + Yi ≥ i for all i such that that

or Si ≤ n − γn, which implies that there is a t such that Y1 + · · · + Yi ≥ i for all i < t, and
Y1 + · · ·+ Yt ≥ γn, and so the component of 1 has size at least γn.

But, we’ve only proved this with probability cε.

15.4 The Giant Component

To prove that the Giant component actually does appear with high probability, we will have to
consider components of verices other than the first. This is why we defined our “asleep-active-
retired” process to activate a sleeping node when it gets stuck.

To prove that a giant component should appear, we will take a closer look again at the branching
process, and show that it is very unlikely that the process dies out given that it reaches a large
enough size.

That is, let Y1, Y2, . . . be a sequence of variables with distribution B(k, (1 + ε)/k). Let Zt =
Y1 + · · ·+ Yt. We want to show that, as t0 grows:

P [∃t > t0 : Zt < t] → 0.



Lecture 15: October 26, 2006 15-4

To bound P [∃t > t0 : Zt < t], we first bound

P [Zt < t] .

As E [Zt] = t(1 + ε), we can apply a Chernoff bound to show that

P [Zt < t] ≤ e−δ2t(1+ε)/2,

where δ = ε/(1 + ε), so

P [Zt < t] ≤ e−ε2t/(1+ε)2 =
(
e−ε2/(1+ε)2

)t
.

Now, setting x = e−ε2/(1+ε)2, we find that

P [∃t > t0 : Zt < t] ≤
∑
t>t0

xt =
xt0

1− x
.

And, this goes to zero exponentially quickly at t0 goes to infinity.

Returning to the graph case, this tells us that there is a constant c2 so that the probability that
the component of node 1 has size greater than c2 lnn and less than γn is at most 1/n2. So, with
probability at least 1− 1/n the graph has no component with size between c2 lnn and γn.

So, all we need to do now is rule out the possibility that all the components have size less than
c2 lnn. Consider the first couple of components we discover. As long as the total number of vertices
we have found so far is less than γn− c2 lnn, we can apply the argument from the previous section
to argue that the probability the component we find has size less than c2 lnn is at most 1− cε. So,
provided that k(c2 lnn) < γn, the probability that the first k components we find all have size at
most c2 lnn is at most (1− cε)k, which goes to 1/n for k = O(lnn). So, for n sufficiently large, this
argument tells us that the probability that we do not find a giant component is at most 1/n.


