Graphs and Networks Oct 31: Lecture 16 Daniel A. Spielman

The World-Wide Web, (or a managable portion of it)

Internet:

Connections among routers, or BGP relations among Autonomous Systems

Actors, with edges if have appeared in the same movie

Co-authorship vertices = authors edges between pairs who've published together

```
Electrical Grid:
vertices = generators, transformers, substations
edges = high-power transmisison lines
```

Neural Network of worm - Caenorhabditis elegans

Conformation space of lattice polymer chain vertex = configuration edge = can reach one from another Protein interaction network (yeast S. verevisiae) vertex = protein edge between proteins that interact

From data in \mathbb{R}^n

data point -> vertex eclige between u and v of wt dist(4,v) $6\tau \quad \text{wt} \quad P$

Netflix Challenge: 100 million ratings of 1-5, from 480,000 customers 18,000 movies

\$1,000,000 to whoever can best predict scores.

Average score has RMS error 1.0540 Cinematch RMS error 0.9525 To win grand prize, need **0.8572**

Current leader: 0.9052

Small-World/Low Diameter

Bollobas-Chung ('88): A cycle plus random matching probably has diameter O(log n)

Strogatz-Watts (Nature vol 393, 4 June 1998): Experiments on k-regular graphs on n-nodes

Table 1 Empirical	examples	of small-world networks
	L _{actual}	Lrandom
Film actors	3.65	2.99
Power grid	18.7	12.4
C. elegans	2.65	2.25

Actors: n = 225226, k = 61 Power grid: n = 4,941, k = 2.67 C. elegans, n = 282, k = 14

Diameter in scientific collaborations

FIG. 3. Average distance between pairs of scientists in the various communities, plotted against the average distance on a random graph of the same size and average coordination number. The dotted line is the best fit to the data which also passes through the origin.

The Structure of Scientific Collaboration Networks, M.E.J. Newman http://arxiv.org/abs/cond-mat/0007214/

Graph Structure in the Web

Broder et. al., Computer Networks 33, (2000) pp.309-320

Altavista Crawl of 200M pages, 1.5B links

Graph Structure in the Web

Broder et. al., Computer Networks 33, (2000) pp.309-320

For two random nodes, directed path exists with prob 25%

Edge type	In-links (directed)	Out-links (directed)	Undirected
Average connected distance	16.12	16.18	6.83

Breadth-first search from random nodes in SCC:

Measure	Minimum depth	Average depth	Maximum depth
In-links	475	482	503
Out-links	430	434	444

As the table shows, from some nodes in the SCC it is possible to complete the search at distance 475, while from other nodes distance 503 is required. This allows us to conclude that the directed diameter of SCC is at least 28.

Clustering Coefficient:

If node i has k nbrs, could be k(k-1)/2 triangles at node k. $Q_i = number of triangles at node i / (k(k-1)/2)$

 $C = ave_i C_i$

alternatively, can use

C = 6 x number triangles / number length-two paths

Table 1 Empirical examples of small-world networks									
	Lactual	Lrandom	$C_{\rm actual}$	$C_{\rm random}$					
Film actors	3.65	2.99	0.79	0.00027					
Power grid 🔬 🔨	18.7	12.4	0.080	0.005					
C. elegans	2.65	2.25	0.28	0.05					

Scientific Collaboration Networks

		Los Alamos e-Print Archive					
	MEDLINE	complete	astro-ph	cond-mat	hep-th	SPIRES	NCSTRL
total papers	2156769	98502	22029	22016	19085	66652	13169
total authors	1388989	52909	16706	16726	8361	56627	11994
first initial only	1006412	45685	14303	15451	7676	47445	10998
mean papers per author	5.5(4)	5.1(2)	4.8(2)	3.65(7)	4.8(1)	11.6(5)	2.55(5)
mean authors per paper	2.966(2)	2.530(7)	3.35(2)	2.66(1)	1.99(1)	8.96(18)	2.22(1)
collaborators per author	14.8(1.1)	9.7(2)	15.1(3)	5.86(9)	3.87(5)	173(6)	3.59(5)
cutoff z_c	7300(2700)	52.9(4.7)	49.0(4.3)	15.7(2.4)	9.4(1.3)	1200(300)	10.7(1.6)
exponent τ	2.5(1)	1.3(1)	0.91(10)	1.1(2)	1.1(2)	1.03(7)	1.3(2)
size of giant component	1193488	44337	14845	13861	5835	49002	6396
first initial only	892193	39709	12874	13324	5593	43089	6706
as a percentage	87.3(7)%	85.4(8)%	89.4(3)	84.6(8)%	71.4(8)%	88.7(1.1)%	57.2(1.9)%
2nd largest component	56	18	19	16	24	69	42
mean distance	4.4(2)	5.9(2)	4.66(7)	6.4(1)	6.91(6)	4.0(1)	9.7(4)
maximum distance	21	20	14	18	19	19	31
clustering coefficient ${\cal C}$	0.072(8)	0.43(1)	0.414(6)	0.348(6)	0.327(2)	0.726(8)	0.496(6)

Emergence of Scaling in Random Networks, Barabasi and Albert, Science, vol 286, 15 Oct 1999

Degree distributions

Power-low when

$$X_{k} = \# nodes deg k$$

 $\approx C \cdot k^{-\alpha}$
for some constants $C_{i} \propto$
 $P_{k} = \frac{X_{k}}{\sum X_{i}}$
 $get \log(P_{k}) = \log(c) - \alpha \log(k)$

Power-law degree distributions

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration graph with N = 212,250 vertices and average connectivity $\langle k \rangle = 28.78$. (B) WWW, N = 325,729, $\langle k \rangle = 5.46$ (6). (C) Power grid data, N = 4941, $\langle k \rangle = 2.67$. The dashed lines have slopes (A) $\gamma_{actor} = 2.3$, (B) $\gamma_{www} = 2.1$ and (C) $\gamma_{power} = 4$.

Emergence of Scaling in Random Networks, Barabasi and Albert, Science, vol 286, 15 Oct 1999

Power-Law Degree Distributions?

FIG. 1. Histograms of the number of collaborators of scientists in four of the databases studied here. The solid lines are least-squares fits to Eq. (1).

FIG. 2. Histograms of the number of papers written by scientists in four of the databases. As with Fig. 1, the solid lines are least-squares fits to Eq. (1).

used. However, our data are well fitted by a power-law form with an exponential cutoff:

$$P(z) \sim p^{-\tau} e^{-z/z_o}$$
, (1)

The Structure of Scientific Collaboration Networks, M.E.J. Newman http://arxiv.org/abs/cond-mat/0007214/

Diameter in scientific collaborations

Explain below-line points by power-law degree distribution:

Bollobas-Riordan.

FIG. 3. Average distance between pairs of scientists in the various communities, plotted against the average distance on a random graph of the same size and average coordination number. The dotted line is the best fit to the data which also passes through the origin.

The Structure of Scientific Collaboration Networks, M.E.J. Newman http://arxiv.org/abs/cond-mat/0007214/

Power-law degree distributions

Graph structure in the Web, Broder et. al.,

Computer Networks Vol 33, No 1-6, June 2000, pp. 309-320

Analysis of Web Graph

Graph structure in the Web, Broder et. al.,

Computer Networks Vol 33, No 1-6, June 2000, pp. 309-320

Weakly-connected components (traverse edge either way) largest had 186m pages = 91%

Strongly-connected components (only following links) largest had 56m pages = 28%

"Scale-Free"

If P. [X > x]~ cx-d Pr[X>x | X>w]= Pr[X>x] Pr[X>w] $n\left(\frac{x}{\omega}\right)^{-\alpha}$

In contrast, -1x if Pr[X>x]~e, -1(x-w) Pr[X>x[X>w]~e

Problems with these plots:

Towards a theory of scale-free graphs: Li, Alderson, Ranaka, Doyle, Willinger, arXiv:cond-mat/0501169 v2 18 Oct 2005 Better to take complementary CDF:

$$P_{k} = \sum_{k'=k}^{\infty} P_{k} = P_{k} [X \ge k]$$

if $P_{k} \sim k^{-\alpha}$
 $P_{k} \sim k^{-(\alpha-1)}$

Power-Law Degree Distributions?

The Structure and Function of Complex Networks M.E.J. Newman, cond-mat/0303516 v1 15 Mar 2003

Assortative

If high-degree nodes likely connected If $P_E = prob node has deg t$

$$f_{t} = \frac{(t_{t+1})P_{t+1}}{\sum_{j} j P_{j}}$$

Assortative

	network	n	r
	physics coauthorship ^a	52909	0.363
g	biology coauthorship ^a	$1\ 520\ 251$	0.127
orl	mathematics coauthorship ^b	253339	0.120
stw	film actor collaborations ^c	449913	0.208
ne	company directors ^d	7673	0.276
rld	Internet ^e	10697	-0.189
WO.	World-Wide Web ^f	269504	-0.065
al-1	protein interactions ^g	2115	-0.156
re	neural network ^h	307	-0.163
	food web ⁱ	92	-0.276
S	random graph ^u		0
de	Callaway <i>et al.</i> ^v		$\delta/(1 + 2\delta)$
mc	Barabási and Albert ^w		0

Assortative Mixing in Networks, M.E.J. Newman cond-mat/0205405 v1 20 May 2002

	network	type	n	m	z	l	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
ial	film actors	undirected	449 913	25516482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company directors	undirected	7673	55392	14.44	4.60	-	0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253 339	496 489	3.92	7.57	-	0.15	0.34	0.120	107, 182
	physics coauthorship	undirected	52 909	245300	9.27	6.19	-	0.45	0.56	0.363	311, 313
	biology coauthorship	undirected	1520251	11803064	15.53	4.92	-	0.088	0.60	0.127	311, 313
š	telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1				8, 9
	email messages	directed	59 912	86300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16 881	57029	3.38	5.22	-	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810				3.2				265, 266
-	WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
formatio	WWW Altavista	directed	203549046	2130000000	10.46	16.18	2.1/2.7				74
	citation network	directed	783 339	6716198	8.57		3.0/-				351
	Roget's Thesaurus	directed	1 0 2 2	5103	4.99	4.87	-	0.13	0.15	0.157	244
-	word co-occurrence	undirected	460 902	17000000	70.13		2.7		0.44		119, 157
	Internet	undirected	10 697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
6	power grid	undirected	4 9 4 1	6594	2.67	18.99	-	0.10	0.080	-0.003	416
B	train routes	undirected	587	19 603	66.79	2.16	-		0.69	-0.033	366
ğ	software packages	directed	1 439	1 723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
통	software classes	directed	1 377	2 213	1.61	1.51	-	0.033	0.012	-0.119	395
ž	electronic circuits	undirected	24097	53248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 2 9 6	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
CB.	protein interactions	undirected	2115	2240	2.12	6.80	2.4	0.072	0.071	-0.156	212
biologi	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
	freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
	neural network	directed	307	2359	7.68	3.97	-	0.18	0.28	-0.226	416, 421

The Structure and Function of Complex Networks M.E.J. Newman, cond-mat/0303516 v1 15 Mar 2003