Lecture 19, Clustering Heuristics Il

Monday, November 13, 2006
9:40 PM

| began class by restating the MCL algorithm, and giving an example of its
performance on an interesting graph. Here's the example, with some
explanation.

First, here's the graph | used:

load mclExamp
gplot(a,xy)

1.5+ -

0.5 -

0.5+ —

-15+ —

Now, I'll do a demo of the MCL algorithm on this graph, while varying the
exponent r to which we raise each entry:

mcldemo

In this figure, | have drawn the graph in grey, and some other edges in blue and
red. These edges correspond to the non-zero entries in the matrix produced by
the MCL algorithm. The black nodes are the two nodes with non-zero diagonal
entries. In the following figure, | present the matrix. But, rather than presenting
it using numbers, | use white to denote zeros, and different markers for different
non-zero values:
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As you can see, it is a 46-by-46 matrix. You now also see that the colors of the
edges above corresponded to the values in the non-zero entries. All the values
were 1, except for the two nodes that appeared in both clusters, which were
0.406.

Oh, yes. | said in class that we form one cluster for each node that has a non-zero
diagonal entry (circled in the picture above). We then connect it to each node
that has a directed edge pointing to it (in the output matrix). The output matrix is
normalized so that the sums of the weights of the edges out of each node is 1.
While in class | usually make this mean that the row-sums are 1, when generating
this figure | set the column-sums to 1. (I took the transpose).

Now, let's go on with varying r.
r=135

15+

0.5

0.5

%84 L EE 2

20r # 0.392

30+

40 -

5 10 15 20 25 30 35 40 45

Here, we have clusters whose centers point to each other. In this case,
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‘we merge the clusters.

| go through many more values of r in the demo. But in these notes I'm skipping
to the next one | want to dwell on:
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Here, you can see that it is possible to get many different values in the matrix.

| then went on to prove three properties that any matrix M must have if M = M"2
and the sum of the weights on the edges coming out of each vertex is one. They
were

[, K\gy@dywv% = X >z
2. Xx—oxad K>Sy = Y>> X

2ok >y = oy

| refer you to pages 57 and 58 of van Dongen's thesis for the proof.
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K-

Means

K-means is a popular way of clustering vectorial data. I'll briefly explain k-means,
and then explain a result by Dhillon, Guan and Kulis that allows us to apply the
algorithm in graphs.

Given n points < PRy X € [T the k-means objective function

defines the quality of a clustering oy C |« tobe

> > Xi-wllS e pe=TaT 2 %0

a<=| K(f[Q X €l

That is,/'“q is the average of points in its cluster, and the quality of the clustering
is the sum of the squares of the distances of points in a cluster to its average.
A popular algorithm for approximately optimizing this objective function (it

doesn't have any provable guarantees) is the natural greedy algorithm, which
repeats the following steps.
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We typically initialize with either a crude clustering, or just a random clustering.
| used a random clustering in the following example. Press a key to step it.
Here is are two examples of the clustering it produced when asked for 2 clusters:

>> load nov7
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0.6 -
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0.4-

>> kmeans(xy,2,10);
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>> Kmeans(Xxy,Z,10);
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And, for 10 clusters:
>> kmeans(xy,10,10);
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The one formal thing we can say about this algorithm is that it converges.
Informally, we can say that it is very popular in practice.

But, how are we going to apply it to graphs? The answer is to use "Kernel K-
means". This means that we are going to map each vertex in a graph to a point in
a vector space. This begs the question of how we are going to choose these
points. The answer is that we are not going to. Rather, we are going to specify
their inner products. The matrix of these inner products is called a kernel matrix,
and we will denote it by K. We will never need to specify the points, as long as
they exist.

That is, we just want to specify K such that

< )

t - — . -

1.) Kz X\)

Of course, given a particular K, it is not immediately clear whether there are
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vectors X, ..., X such that Ki; = x;'x; .

It turns out that such vectors exists if and only if K is positive semi-definite. To see
that the existance of these vectors implies that K is psd, note that it implies

K: ></<‘ Whee ><$ ><(\>§1~-><v.

| \

To go the other way, note that if K is psd, then its expansion in eigenvalues and
eigenvectors has the form

= YDV

As each entry in D is non-negative, we can set

W DA X

%y
(\

So, we need to choose a psd matrix K.
We will now see that some fortunate choices of K demonstrate the equivalance
between the k-means objective function and standard graph partitioning

objective functions. We will consider the following two graph partitioning
objective funtions:
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Conductance is usually a better measure. But, for now we'll just consider sparsity,
as it is easier to deal with.

To get sparsity, let's consider the kernel matrix K =2D+A, that is the identity minus the
Laplacian. First, we re-write the k-means objective function (using elementary algebra) as:
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So, when we optimize the k-means objective function with this kernel, we also
optimize the ratio cut objective function.

A warning is in order here: | got this result using a different kernel than was used
in the paper of Dhillon, Guan and Kulis. | might have made a mistake. But, I'm at
least close. They used K=1-D +A.

We can similarly get a k-means version of conductance. But, we need to use a
weighted formulation of kernel k-means. See the paper.

Miller-Tolliver's spectral rounding

This is a paper that | am very excited about. It starts out by taking a simple
spectral partitioning algorithm, and improving it by iteratively adjusting the
weights on the edges using the eigenvectors computed in the previous iteration.

When producing k components, the algorithm converges with a weighted
normalized Laplacian that has k zero eigenvalues. In this case, one can then read
the components off immediately from the corresponding eigenvectors.

I'll give the updating rule for the case of k = 2, in which case we just use one
eigenvector.
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Here are some experiments on a random graph with a planted bisection. In
particular, | divide 100 nodes into sets {1, ..., 50} and {51, ..., 100}. Within each
half, | place edges with probability 0.2, and between halves with probability 0.1:

>> a = plantbisection(50,.2,.1);
spy(a)

Here is a plot of the adjacency matrix:
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Let's check the quality of the partition we planed, and then of the partition
generated by v; -- the straight spectral method:

>> ncutval(a,1:50)
ans =
1, 0.34968
>> f1 = crudeMillerTolliver(a,.001,1);
>> ncutval (a,find(fl < 0))
ans =

(1.1) 0.34742

So, the straight spectral method was just a little better. Now, let's run a few
iterations of a crude version of Miller-Tolliver, and see that it gets even better

>> f = crudeMillerTolliver(a, .0001,10);
>> ncutval (a,find(f < 0))

ans =
., 0.34683

>>
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