
This first approximation is not quite what do, but is a good approximation.  
Will fill fix some details later in the lecture, once we know enough for it to 
make sense.

a.

Notation: for a node v, let d+(v) denote the number of edges leaving v, the 
out-degree of v, and d-(v) be the number of edges entering v, the in-degree 
of v.

b.

We would like PageRank to be a function from vertices to the non-negative 
reals, r such that 

c.

As it is not necessarily possible to satisfy this equation, we just ask for a 
solution to the more general equation

d.

For some c > 0.
Finally, r is normalized so that e.

                   sum_v r(v) = 1.

Here are some example, but without the normalization so the numbers are 
easier to read.

First approximation of PageRank.I.

Crawl the web, creating a databasea.
Answer query somehow, e.g. grep. (ex. Funk search)b.

PageRank of Brin-Page, Googlei.
Hits, Kleinberg's algorithm, hubs and authoritiesii.
Downside of being at IBM.iii.

Revolution came with two ideas for exploiting link structure (beyond 
indegree)

c.

How search engines work:I.

Disclaimer: what Google actually does is not public knowledge.a.
Main idea: give a score to every page on the webb.
When get a query, use old technology to get a list of pages (e.g. grep), and 
then display them in the order given by their scores.

c.

PageRank is the algorithm for assigning a score/rank.d.

We will start with PageRank, which Google supposedly usesII.
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Here's one way to compute a PageRank vector.  It converges relatively 
quickly, as can be seen from the example.  In fact, the actual vector 
converges even faster.

a.

Not necessarily.  If the graph has disconnected components, there will 
be many solutions to the equations.  Correct pagerank algorithm will fix 
this.

i.
Is the PageRank vector unique?b.

If the graph is strongly connected: for every u and v, is a directed path from u 
to v, then r exists, is unique, and has c = 1.  We will now prove this fact.  But 
first, we must introduce some matrix notation for dealing with this.

c.

The Adjacency matrix of a graph is a matrix A such thatd.

Recall that Au,v is the entry in the uth row and vth column.

Now, define the matrix D by

And, the matrix M by 

Does a PageRank vector exist?  Yes.1.
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Here's an example:

Now, let's look carefully at this example, and see why the following vector 
satisfies the PageRank equations:

Note that the sum of the entries in every row of M is 1.  For M to be well-
defined, we require that d + (v) > 0 for all v.

Now, the PageRank equations become r = c r M.  That is, r is a left-
eigenvector of M of eigenvalue 1/c.
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Again, let's consider the case in which the graph is strongly connected, and 
show that 1 is an eigenvalue.  This is necessary to show that c=1 is 
achievable.  To show this, we show that the all-1's vector is a right-
eigenvector of eigenvalue 1.  To see this, note that A*1 is a column-vector 
giving the out-degree of every vertex.  So, D-1 (A*1) is again the all-1's vector.  
Now, as the right and left-eigenvalues are the same, we know that M has a 
left-eigenvector of eigenvalue 1.

a.

In a few moments, we will show that the left-eigenvector of eigenvalue 1 is 
non-negative, and unique.  But, for now let's assume that a non-negative 
vector r exists such that r = r M, and show this implies it is unique.

b.

First, we establish that if the graph is strongly connected, r = r M, and r is 
non-negative and has at least one non-zero entry, then r is strictly positive.  
Assume r(u0) > 0.  Then, for every v, there exists a directed path from u0 to u1

to …  to uk to v.  From the PageRank equations, we have

c.

Now, let's observe that if r and s are two vectors that satisfy r = r M and s = s 
M, then for every beta, (r + beta s) = (r + beta s) M.  This follows simply from 
linearity:

d.

Finally, note that if r is strictly positive, and r and s satisfy  r = r M and s = s M, 
then there is a beta such that the vector (r - beta s) is non-negative, but has 
at least one zero entry.  As we will also have (r - beta s) = (r - beta s) M, this 
will contradict the point established above.  So, any such r must be unique.

e.

I was going to show that if the graph is strongly connected and r = r M then r 
must be non-negative.  But, I ran out of time.  So, we will move this fact to a 
problem set.

f.

There are two more things I should say about how PageRank works.  The first is 
how they handle nodes with out-degree zero.  Brin and Page say that they ignore 
these nodes at first, solve the remaining problem, and then put those nodes back 
in.  We could think of many reasonable ways of making this formal.  I'm not sure 
which one they actually do.

To explain the second point, let me first observe that in the algorithm as we 
specified so far, each node make equal contributions to the ranks of the nodes it 
points to.  It would be easy to imagine that a node could make different 
contributions to each of the nodes it points to.  In fact, Brin and Page make each 
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Which can also be written:

Now, let me explain the probabilistic approach to understanding pagerank.
They imagine a monkey surfing the web.  At each time step, the monkey chooses 
to follow a random link on a page (with probability 1- alpha), or to go to a 
completely random place on the web (with probability alpha).  Imagine that the 
monkey surfs for a very long time.  Eventually, there is one probability distribution 
giving the chance that the monkey is at each page.  The probability of being at 
page v becomes r(v), where r is the pagerank vector.

To see this, consider the probability of being at a page v.  It is the sum over all 
pages u that point to v of the probability of being at u, times the probability of 
jumping from v to u.  This is exactly what is captured by the equation

contributions to each of the nodes it points to.  In fact, Brin and Page make each 
node make a small contribution to every other node.

Formally, the matrix they consider is given by:
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Finally, I also mentioned Kleinberg's algorithm, called Hits.
Kleinberg had the idea that some nodes are authorities on certain topics, and 
others are hubs, which list authorities.  For example, my web page points to 
authorities on many topics.  So, he assigned each node a hub-weight, h(v), and an 
authority-weight, a(v).  A page that is pointed to by many good hubs becomes an 
good authority, and a page that points to many good authorities should be a good 
hub.  So, he asked that the vectors a and h satisfy:
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