
Graphs and Networks Lecture 4

Random Walks on Graphs

Lecturer: Daniel A. Spielman September 19, 2006

4.1 Introduction

In this lecture, we will consider random walks on undirected graphs. Let’s begin with the definitions.
Let G = (V,E) be an undirected graph. A random walk on G with initial distribution p0 is a
distribution on sequences of vertices (v0, v1, v2, . . . ) where v0 is chosen according to distribution p0,
and vi+1 is chosen to be a random neighbor of vi. Typically, we will take the initial distribution to
be focused on a particular vertex, v0, in which case we say that the walk starts at v0.

We will usually be interested in the distribution of the random walk after some number of steps,
typically denoted t. We will now describe this in matrix notation. To this end, we let pt ∈ IRV

denote the probability distribution of vt–that is the probability of being at each vertex after t steps.
Let A be the adjacency matrix of the graph, dv the degree of vertex v, and D = diag(d1, . . . , dn),
the diagonal matrix of the degrees. Then, set

M
def= D−1A,

which I will call the walk matrix of G.

We then have
pt = pt−1M.

So that you’ll believe me, I’ll do a simple example.

You can find it at http://www.cs.yale.edu/homes/spielman/462/lect4ex.pdf.

4.2 Stationary Distribution

In previous lectures, we used the stationary distribution of such a walk to provide a ranking. In
the undirected case, this is not so useful. The reason is that the solution to

r = rM

is easy to derive. It comes from taking r(v) proportional to dv. In particular, if m is the number
of edges in the graph, then r(v) = dv/2m is a solution to this equation, and we will also show that
every random converges to this distribution, at least if the graph is non-bipartite. To see that r is
a solution to this equation, let d be the vector of (d1, . . . , dn), and compute:

dD−1A = 1A = d.
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So, if every page on the web contained a link to every page that referenced it, PageRank would do
nothing more than count the number of in-links.

4.3 Convergence

It turns out that if G is connected and non-bipartite, then every random walk eventually converges
to the distribution r that was just defined. We will now go over a proof of this (leaving some details
to the problem set to be given out next week), and even bound how long it takes for the walk to
converge.

Our goal is to evaluate p0M
t. The way one usually examines multiplication of a vector by a matrix

is by consideration of the eigenvalues and eigenvectors of M . But, M is not a symmetric matrix,
so it is not immediately clear that it admits a basis of eigenvectors. Fortunately, M is similar to a
symmetric matrix.

Consider the matrix D−1/2 def= diag(1/
√

d1, . . . , 1/
√

dn). Then,

D1/2MD−1/2 = D1/2D−1AD−1/2 = D−1/2AD−1/2.

So, we know that M has the same eigenvalues as

N
def= D−1/2AD−1/2,

which is symmetric. So M has n real eigenvalues. Similarly, if v is an eigenvector of N with
eigenvalue λ, then we can see that w = vD1/2 is an eigenvector of M with eigenvalue λ:

wD−1A = vD1/2D−1A = vD−1/2A = v
(
D−1/2AD−1/2

)
D1/2 = λvD1/2 = λw.

Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of N and let v1, . . . , vn be a basis of eigenvectors, where
vi is an eigenvector of λi. Recall that we can then express N by

N =
∑

i

λiv
T
i vi.

(warning: my vis are row vectors).

Since it has been a while since some of you have taken linear algebra, let me veryify this formula
by checking it on the eigenvectors. We have

vjN = vj

∑
i

λiv
T
i vi =

∑
i

λi

(
vjv

T
i

)
vi = λjvj ,

as

vjv
T
i =

{
1 if i = j

0 otherwise.

We then have that
M t = (D−1/2ND1/2)t = D−1/2N tD1/2,
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and so
p0M

t =
∑

i

λt
i

(
p0D

−1/2vT
i

)
viD

1/2.

The reason that this converges to r is that v1 is (
√

d1, . . . ,
√

dn)/
√

2m, r is a multiple of v1D
1/2,

λ1 = 1, and if G is connected and not bipartite, then |λi| < 1 for i ≥ 2 (we will show this in a
moment). So, we find

p0M
t → p0D

−1/2vT
1 v1D

1/2 = (1/
√

2m)p01T v1D
1/2 = (1/

√
2m)v1D

1/2 = r.

Lemma 4.3.1. All eigenvalues of M have absolute value at most 1.

Proof. We will prove this using right-eigenvectors. Assume

D−1Aw = λw,

and assume without loss of generality that

|w(1)| ≥ |w(i)| ,

for all i. Then,

λw(1) =
1
d1

∑
(1,j)∈E

w(j),

and so

|λ| |w(1)| =

∣∣∣∣∣∣ 1
d1

∑
(1,j)∈E

w(j)

∣∣∣∣∣∣
≤ 1

d1

∑
(1,j)∈E

|w(j)|

≤ 1
d1

∑
(1,j)∈E

|w(1)|

= |w(1)| .

So, |λ| ≤ 1.

It will be an exercise to show that |λi| < 1 for i ≥ 2 if the graph is connected and non-bipartite.

The difference between 1 and max(λ2, |λn|) is called the spectral gap, and is related to how quickly
the walk converves to the stationary distribution. Define

µ = 1−max
i≥2

|λi| .

Lemma 4.3.2. If p0 = χa, then for all b and t ≥ 0,

|pt(b)− r(b)| ≤
√

db

da
(1− µ)t.
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Proof. We have pt(b) = χaM
tχT

b . Recalling that

D−1/2vT
1 = 1T /

√
2m

and
viD

1/2 = d/
√

2m,

we compute

χaM
tχT

b =
∑

i

λt
i

(
χaD

−1/2vT
i viD

1/2χb

)
= χa(1T /

√
2m)(d/

√
2m)χb +

∑
i≥2

λt
iχaD

−1/2vT
i viD

1/2χb.

Now,
χa(1T /

√
2m)(d/

√
2m)χb = dχb/2m = r(b).

On the other hand,

∑
i≥2

λt
iχaD

−1/2vT
i viD

1/2χb ≤ (1− µ)t

√
db

da

∑
i≥2

∣∣λt
iχav

T
i viχb

∣∣
≤ (1− µ)t

√
db

da
,

where the last step follows from the inequality∑
i≥2

∣∣χav
T
i viχb

∣∣ ≤ 1, (4.1)

which we will now establish. To establish this inequality, note that χavi = vi(a). So, if we let V be
the matrix whose rows are v1, . . . , vn, then the right-hand-side of (4.1) is the inner product of the
ath and bth column of V , excluding the first row. To see that this is at most one, recall that V is
an orthonormal matrix, so each column of V is a unit vector.

4.4 Lazy Random Walks

As it is a pain to tread bipartite and non-bipartite graphs differently, researchers often consider
lazy random walks on graphs. These walks stay put with probability 1/2, and step to a random
neighbor with probability 1/2. The matrix corresponding to these walks is given by

W
def=

1
2

(I + M) ,

which is similar to the matrix
1
2

(I + N) .

Such a matrix has all eigenvalues between 0 and 1, which is another reason it is convenient to study
lazy random walks.


