Graphs and Networks Lecture 5

Spectra of Graphs
Lecturer: Daniel A. Spielman September 21, 2006

The purpose of this lecture is to examine the spectra of some fundamental graphs. There are many
matrices that one can associate with a graph, of which we have seen the adjacency matrix and the
walk matrix. A little into this lecture, we will find it convenient to introduce one more matrix: the
Laplacian matrix of a graph.

5.1 Spectral Graph Drawing

T’ll begin by showing you how, for some graphs, one can learn a lot about them by looking at their
eigenvectors. In particular, we will use the eigenvectors to draw the graphs.

We will use right-eigenvectors of the walk matrix. As the eigenvector of eigenvalue 1 is the all-1’s
vector, it will not be very useful for drawing the graph. So, instead we will consider using other
eigenvectors whose eigenvalues are close to 1.

Consider the equation that these eigenvectors satisfy:
px =D Az,

For each vertex ¢, this equation implies:

pali) = 7 32 ali)

(i,5)EE

So, when p is close to 1, the value assigned to z(i) is close to the average value assigned to its
neighbors.

Let gy > pg > --- > p, be the eigenvalues of D7'A, and let vy,...,v, be the corresponding
eigenvalues. In the following pictures, we will draw vertex ¢ at coordinate (ve (), v3(7)).

Let’s begin by generating and drawing the ring graph this way.



a = diag(ones(1,9),1); o |

a(1,10) = 1; 0af 8
a=a+a’; 0af 1
s = sum(a); 0al ,
di = diag(sparse(1./s)); ol |
m = di*a;

[v,e] = eig(full(m));
gplot(a,v(:,[8 91));
hold omn

gplot(a,v(:,[8 91),’0%);
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This is a very good picture of a ring.

Now, let’s try a 10-by-10 grid (in the following 3 and 6 were the indices of the eigenvectors I
wanted).

a = grid2(10); o
s = sum(a); .
di = diag(sparse(1./s)); |
m = dix*a; T
[v,e]l = eigs(m,6); 05|
e

gplot(a,v(:,[3 61));

The next graph is one I found surfing the web. The vertices are roads in Rome, and they have an
edge between them if they meet at an intersection.



load rome

-0.011

e
gplot(a,v(:,[2 3]1)); o}
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In the next graph, the vertices are everyone who co-authored a paper with Erdos, with edges between
each pair who co-authored a paper with each other. Here is the beginning of the transcript of my
Matlab session.

>> load erdosGraph
>> size(a)

471 471

>> s = sum(a);

>> di = diag(sparse(1./s));
>> m = dixa;

>> [v,e] = eigs(m,6);

>> e
e=

-1.0000 0 0 0 0 0

0 1.0000 0 0 0 0

0 0 1.0000 0 0 0

0 0 0 -1.0000 0 0

0 0 0 0 -1.0000 0

0 0 0 0 0 1.0000

So, this graph has many eigenvalues of 1, and some of —1. This means that it has many connected
components. In the following code, I will extract the largest component by looking at an eigenvector



of eigenvalue 1. I will do it by grabing the vertices with the most common value. If you try this at
home, the most common value might be different.

0.1

0.08
>> plot(v(:,2))
>> ind = find(abs(v(:,2)-.045) < .005); 0.06
>> size(ind)

004 V Vw

0.02

ans =

463 1

o
T

-0.02

Now, let’s plot the graph induced on this component.

>> b = a(ind,ind);
>> s = sum(b);
>> di = diag(sparse(l./s));

>> m = di*b; ”
>> [v,e] = eigs(m,6); "
>> diag(e) "
ans = o
1.0000 oust
0.9506 o
0.9291 ol
0.9003 o]
0.8873 B BT T
0.8832 ' S

>> gplot(b,v(:,2:3))

5.2 The Ring Graph

Let R,, denote the ring graph on n vertices. That is, the graph on vertex set {1,...,n} with edges
between vertices ¢ and i + 1 for 1 < ¢ < n, and the edge (1,n). Let A be the adjacency matrix
of this graph, and let M = (1/2)A be the walk matrix of this graph (it is A divided by 2 because
every vertex has degree 2). We will find eigenvectors of M by guessing their identity, and then
verifying that our guesses are correct.

To begin, draw this graph in the most-natural way as a regular n-gon, with vertex u at point



zy = (cos ZZ% sin 2I%). From this picture, it is geometrically obvious that (z, + z,12)/2 is a

multiple of z,y1. This means that the vectors x and y given by

sin
2
x(u) = cos _7ru’ and
n

. 27w
y(u) = sin -

are eigenvectors of M. To compute the eigenvalue, let’s look at the equation
(Zn—l + Zl)/Z = UZp.
It is clear that the value of y is the common z-coordinate of z; and z,_1, which is cos(27/n).

Using different pictures of this graph, we can compute the other eigenvalues. For example, if we
fix a k and draw u at point (cos %,sin cos %), then we can similarly argue that we obtain a
pair of eigenvectors of eigenvalue cos(2wk/n). So long as k < n/2, all the eigenvectors generated
this way are distinct. If n is odd, then these yield n — 1 eigenvectors, which when combined with

the all-1’s vector gives the desired total of n.

If n is even, then setting k = n/2 yields a drawing of the graph that only uses the points (1,0)
and (—1,0), and so it only provides only one more eigenvector. Combining this with the all-1’s
eigenvector yields n eigenvectors, in the case that n is even.

Now, let’s examine the spectral gap of the ring graph. It is

272

=1—cos(2m/n —,

gl (2m/n) = —3
as n grows large.

This is a very small spectral gap.

5.3 The Path Graph

We let P,, denote the ring graph on n vertices: the graph on vertex set {1,...,n} and edges (i,i+1)
for 1 <7 < n. Let M be the walk-matrix of this graph.

We will show that the right-eigenvectors of M can be obtained from the eigenvectors of the walk-
matrix of Rs,_o. The idea is to line up each vertex of P, with one or two vertices of Ro,_o: we
associate vertex 1 of P, vertex 1 of Ro,_o, vertex n of P, with vertex n of Ro,_9, and vertex ¢ of
P, (for 1 < i < n) with both vertices i and 2n — i of Ry,_2. It is not to difficult to see that, under
this identification, a random walk on Rs,_o becomes a random walk on P,.

So, any eigenvector w of the walk matrix for Rs, that satisfies w(i) = w(2n —i) for 1 < i < n
becomes an eigenvector of M. So, if we take an eigenvector of the walk matrix of Ro,, of the form
2rk(u — 1)
cos —————=,
2n

then when we restrict this vector to its first n coordinates, we obtain an eigenvector of M.

w(u) =



5.4 Bounding Eigenvalues, I

There are very few graphs whose eigenvalues and eigenvectors can be analytically derived. Typi-
cally, we just try to prove some rough statements about the spectral gap, and the corresponding
eigenvectors. The main tool we use to do this is the Courant-Fischer Theorem.

Theorem 5.4.1 (Courant-Fischer). Let A be a symmetric matriz with eigenvalues 1 > o >
<o > . Then, for all 1 < k <mn,

. ol Az
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- S of dimension k z€S Ty
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Note that the term

T Az

Tz
is usually called the Rayleigh quotient of . For an eigenvector v, the Rayleigh quotient of v is its
eigenvalue.

We often exploit this theorem through the following corollary.

Corollary 5.4.2. Let A be a symmetric matrix with eigenvalues 1 > s > -+ > uy and corre-
sponding eigenvectors vi,...,v,. Then, for all1 <k <n,
T Ax p
= max an
Hk Tlvg,.., 061 I'TZE ’
. 2T Ax
W = min

rlvgi,...,0n Ty

As an example of how we will use this theorem, we will prove that the second-largest eigenvalue of
a walk matrix is small by considering the normalized walk matrix (which is symmetric), and then
evidencing a vector orthogonal to the largest eigenvector that has Rayleigh quotient close to 1.

5.5 The Complete Binary Tree

Consider the complete binary tree on n = 2¥ — 1 vertices. To describe how I will label the vertices,
I’ll do the example with n = 15. I will make vertex 1 the root, vertices 2 through 8 the left subtree
with 5 through 8 being the leaves, and vertices 9 through 15 the right sub-tree with 12 through 15
being the leaves. Let D be the diagonal matrix of the degrees, and as in the last lecture let

N =D Y2Ap~1/2,

Recall from last lecture that the eigenvector of eigenvalue 1 of N is

Ul:(\/dilw"?\/a)?



which in our example is
(V2,v3,v3,v/3,1,1,1,1,v/3,v/3,v/3,1,1,1,1).
The vector x that we will use to lower bound o will have the form
= (0,v3,v3,v3,1,1,1,1,—V3, -3, -3, -1, -1, -1, -1).

It should be clear that = is orthogonal to vq, and I hope the general construction of z is clear as
well.

Let’s begin by computing the denominator of the Rayleigh quotient. Observing that the tree has
(n 4 1)/2 leaves, and (n — 3)/2 internal nodes other than the root, we find

eTe=243n—-3)/2+1(n+1)/2=2n-2.
To compute the numerator, note that

D~ ?3 =(0,1,1,1,1,1,1,1,-1,—-1,—-1,—1,—1,—1,-1), and
AD Y22 =(0,2,3,3,1,1,1,1,-2,-3,-3,—1,—1, -1, —1).

That is, AD~'/2z is zero at the root, 2 and —2 at the children of the root, 3 or —3 at all other
internal nodes, and 1 or —1 at all leaves. So,

dTDV2AD™ V20 =2.243(n—17)/2+ (n+1)/2 = 2n — 6.

So,
2T Nz 2n — 6 2
= =1- .
Ty on —2 n—1

So, we learn that the spectral gap of the complete binary tree is at most 2/(n — 1).

X

Still, that computation was not as much fun as it could have been. So, we’ll derive a simpler way
of bounding spectral gaps.

5.6 Comparison with Laplacians

To focus on the spectral gap, it is convenient to shift the eigenvalues of N so that the gap occurs
near zero. To this end, we consider the matrix

LY 1-N=DY*D-A)D

which is called the normalized Laplacian matrix. The eigenvalues of £ will be denoted A1 < Ay <
-+ < Ay, and satisfy
Ai =1 — i,

where p; is the ith largest eigenvalue of N.



We will exploit the fact that the normalize Laplacian is a scaling of an even simpler matrix: the
Laplacian of a graph which is given by

L=D-A.
We will show that one can use a bound on the smallest non-zero eigenvalue of L to obtain a bound

on the smallest non-zero eigenvalue of £, which will be very helpful as the eigenvalues of Laplacians
and normalized Laplacians are particularly easy to bound. The reason is that

Lo = )" (a(i) - 2(5))> (5.1)
(i,5)EE

To exploit this formula to bound the second-smallest eigenvalue of the normalized Laplacian, note
that

, T D12 D12y
Ay = min max T
S of dim 2 z€S Tt x

T
= min max M
S of dim 2 yeS yT' Dy’

by setting y = 2D ~1/2.
So, to upper bound Ag for the complete binary tree, it suffices to take S to be the span of the all-1’s
vector and the vector that is 0 at the root, 1 on the right sub-tree, and —1 on the left subtree. Call
this later vector x. So, any vector in this vector space can be written as a multiple of al + x. We
then have

(el +2)TL(al +z) =2l La =2,

as adding a constant « to each vertex does not change expression (5.1). By a little calculus, one
can show that
(a1 4+ 2)"'D(al + 2) > 27 Da,

which is the sum of the degrees of the vertices other than the root.

5.7 Planar Graphs

For example, we can also use this argument to get a bound on the spectral gap of the n-by-n grid.
If n is even, we create a vector that assigns 1 to the left-half and —1 to the right half. We will then
have 27 Lz = 4n, and 2”7« equal to the sum of the degrees of vertices in the graph, which is just a
little under 4n2. So, we get an upper bound on the second-smallest eigenvalue of the normalized
Laplacian that is just a little larger than 1/n.

To describe a better test vector, let me describe the vertices of the grid as pairs (i,). Then, if we
set x(i,7) =1 —n/2, we get a stronger bound. A little arithmetic shows that the Rayleigh quotient
of this vector is some constant times 1/n2. This is almost tight.

In fact, one can prove similar bounds for all planar graphs. Teng and I proved that for every planar
graph, the second-smallest eigenvalue of the Laplacian satisfies Ao < 8d,,4: /1, Where dpq, is the
largest degree of a vertex in the graph, and n is the number of vertices.



