
Graphs and Networks Lecture 5

Spectra of Graphs

Lecturer: Daniel A. Spielman September 21, 2006

The purpose of this lecture is to examine the spectra of some fundamental graphs. There are many
matrices that one can associate with a graph, of which we have seen the adjacency matrix and the
walk matrix. A little into this lecture, we will find it convenient to introduce one more matrix: the
Laplacian matrix of a graph.

5.1 Spectral Graph Drawing

I’ll begin by showing you how, for some graphs, one can learn a lot about them by looking at their
eigenvectors. In particular, we will use the eigenvectors to draw the graphs.

We will use right-eigenvectors of the walk matrix. As the eigenvector of eigenvalue 1 is the all-1’s
vector, it will not be very useful for drawing the graph. So, instead we will consider using other
eigenvectors whose eigenvalues are close to 1.

Consider the equation that these eigenvectors satisfy:

µx = D−1Ax.

For each vertex i, this equation implies:

µx(i) =
1

di

∑

(i,j)∈E

x(j).

So, when µ is close to 1, the value assigned to x(i) is close to the average value assigned to its
neighbors.

Let µ1 ≥ µ2 ≥ · · · ≥ µn be the eigenvalues of D−1A, and let v1, . . . , vn be the corresponding
eigenvalues. In the following pictures, we will draw vertex i at coordinate (v2(i), v3(i)).

Let’s begin by generating and drawing the ring graph this way.

5-1
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a = diag(ones(1,9),1);

a(1,10) = 1;

a = a + a’;

s = sum(a);

di = diag(sparse(1./s));

m = di*a;

[v,e] = eig(full(m));

gplot(a,v(:,[8 9]));

hold on

gplot(a,v(:,[8 9]),’o’);
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This is a very good picture of a ring.

Now, let’s try a 10-by-10 grid (in the following 3 and 6 were the indices of the eigenvectors I
wanted).

a = grid2(10);

s = sum(a);

di = diag(sparse(1./s));

m = di*a;

[v,e] = eigs(m,6);

e

gplot(a,v(:,[3 6]));
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The next graph is one I found surfing the web. The vertices are roads in Rome, and they have an
edge between them if they meet at an intersection.
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load rome

e

gplot(a,v(:,[2 3]));
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In the next graph, the vertices are everyone who co-authored a paper with Erdos, with edges between
each pair who co-authored a paper with each other. Here is the beginning of the transcript of my
Matlab session.

>> load erdosGraph

>> size(a)

ans =

471 471

>> s = sum(a);

>> di = diag(sparse(1./s));

>> m = di*a;

>> [v,e] = eigs(m,6);

. . .

>> e

e =

-1.0000 0 0 0 0 0

0 1.0000 0 0 0 0

0 0 1.0000 0 0 0

0 0 0 -1.0000 0 0

0 0 0 0 -1.0000 0

0 0 0 0 0 1.0000

So, this graph has many eigenvalues of 1, and some of −1. This means that it has many connected
components. In the following code, I will extract the largest component by looking at an eigenvector
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of eigenvalue 1. I will do it by grabing the vertices with the most common value. If you try this at
home, the most common value might be different.

>> plot(v(:,2))

>> ind = find(abs(v(:,2)-.045) < .005);

>> size(ind)

ans =

463 1
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Now, let’s plot the graph induced on this component.

>> b = a(ind,ind);

>> s = sum(b);

>> di = diag(sparse(1./s));

>> m = di*b;

>> [v,e] = eigs(m,6);

>> diag(e)

ans =

1.0000

0.9506

0.9291

0.9003

0.8873

0.8832

>> gplot(b,v(:,2:3))
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5.2 The Ring Graph

Let Rn denote the ring graph on n vertices. That is, the graph on vertex set {1, . . . , n} with edges
between vertices i and i + 1 for 1 ≤ i < n, and the edge (1, n). Let A be the adjacency matrix
of this graph, and let M = (1/2)A be the walk matrix of this graph (it is A divided by 2 because
every vertex has degree 2). We will find eigenvectors of M by guessing their identity, and then
verifying that our guesses are correct.

To begin, draw this graph in the most-natural way as a regular n-gon, with vertex u at point
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zu = (cos 2πu
n , sin 2πu

n ). From this picture, it is geometrically obvious that (zu + zu+2)/2 is a
multiple of zu+1. This means that the vectors x and y given by

x(u) = cos
2πu

n
, and

y(u) = sin
2πu

n

are eigenvectors of M . To compute the eigenvalue, let’s look at the equation

(zn−1 + z1)/2 = µzn.

It is clear that the value of µ is the common x-coordinate of z1 and zn−1, which is cos(2π/n).

Using different pictures of this graph, we can compute the other eigenvalues. For example, if we
fix a k and draw u at point (cos 2πku

n , sin cos 2πku
n ), then we can similarly argue that we obtain a

pair of eigenvectors of eigenvalue cos(2πk/n). So long as k < n/2, all the eigenvectors generated
this way are distinct. If n is odd, then these yield n − 1 eigenvectors, which when combined with
the all-1’s vector gives the desired total of n.

If n is even, then setting k = n/2 yields a drawing of the graph that only uses the points (1, 0)
and (−1, 0), and so it only provides only one more eigenvector. Combining this with the all-1’s
eigenvector yields n eigenvectors, in the case that n is even.

Now, let’s examine the spectral gap of the ring graph. It is

γ = 1 − cos(2π/n) → 2π2

n2
,

as n grows large.

This is a very small spectral gap.

5.3 The Path Graph

We let Pn denote the ring graph on n vertices: the graph on vertex set {1, . . . , n} and edges (i, i+1)
for 1 ≤ i < n. Let M be the walk-matrix of this graph.

We will show that the right-eigenvectors of M can be obtained from the eigenvectors of the walk-
matrix of R2n−2. The idea is to line up each vertex of Pn with one or two vertices of R2n−2: we
associate vertex 1 of Pn vertex 1 of R2n−2, vertex n of Pn with vertex n of R2n−2, and vertex i of
Pn (for 1 < i < n) with both vertices i and 2n− i of R2n−2. It is not to difficult to see that, under
this identification, a random walk on R2n−2 becomes a random walk on Pn.

So, any eigenvector w of the walk matrix for R2n that satisfies w(i) = w(2n − i) for 1 < i < n
becomes an eigenvector of M . So, if we take an eigenvector of the walk matrix of R2n of the form

w(u) = cos
2πk(u − 1)

2n
,

then when we restrict this vector to its first n coordinates, we obtain an eigenvector of M .
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5.4 Bounding Eigenvalues, I

There are very few graphs whose eigenvalues and eigenvectors can be analytically derived. Typi-
cally, we just try to prove some rough statements about the spectral gap, and the corresponding
eigenvectors. The main tool we use to do this is the Courant-Fischer Theorem.

Theorem 5.4.1 (Courant-Fischer). Let A be a symmetric matrix with eigenvalues µ1 ≥ µ2 ≥
· · · ≥ µn. Then, for all 1 ≤ k ≤ n,

µk = max
S of dimension k

min
x∈S

xT Ax

xT x
, and

µk = min
S of dimension n − k + 1

max
x∈S

xT Ax

xT x
.

Note that the term
xT Ax

xT x

is usually called the Rayleigh quotient of x. For an eigenvector v, the Rayleigh quotient of v is its
eigenvalue.

We often exploit this theorem through the following corollary.

Corollary 5.4.2. Let A be a symmetric matrix with eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µn and corre-

sponding eigenvectors v1, . . . , vn. Then, for all 1 ≤ k ≤ n,

µk = max
x⊥v1,...,vk−1

xT Ax

xT x
, and

µk = min
x⊥vk+1,...,vn

xT Ax

xT x
.

As an example of how we will use this theorem, we will prove that the second-largest eigenvalue of
a walk matrix is small by considering the normalized walk matrix (which is symmetric), and then
evidencing a vector orthogonal to the largest eigenvector that has Rayleigh quotient close to 1.

5.5 The Complete Binary Tree

Consider the complete binary tree on n = 2k − 1 vertices. To describe how I will label the vertices,
I’ll do the example with n = 15. I will make vertex 1 the root, vertices 2 through 8 the left subtree
with 5 through 8 being the leaves, and vertices 9 through 15 the right sub-tree with 12 through 15
being the leaves. Let D be the diagonal matrix of the degrees, and as in the last lecture let

N = D−1/2AD−1/2.

Recall from last lecture that the eigenvector of eigenvalue 1 of N is

v1 = (
√

d1, . . . ,
√

dn),
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which in our example is

(
√

2,
√

3,
√

3,
√

3, 1, 1, 1, 1,
√

3,
√

3,
√

3, 1, 1, 1, 1).

The vector x that we will use to lower bound µ2 will have the form

x = (0,
√

3,
√

3,
√

3, 1, 1, 1, 1,−
√

3,−
√

3,−
√

3,−1,−1,−1,−1).

It should be clear that x is orthogonal to v1, and I hope the general construction of x is clear as
well.

Let’s begin by computing the denominator of the Rayleigh quotient. Observing that the tree has
(n + 1)/2 leaves, and (n − 3)/2 internal nodes other than the root, we find

xT x = 2 + 3(n − 3)/2 + 1(n + 1)/2 = 2n − 2.

To compute the numerator, note that

D−1/2x = (0, 1, 1, 1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1,−1), and

AD−1/2x = (0, 2, 3, 3, 1, 1, 1, 1,−2,−3,−3,−1,−1,−1,−1).

That is, AD−1/2x is zero at the root, 2 and −2 at the children of the root, 3 or −3 at all other
internal nodes, and 1 or −1 at all leaves. So,

xT D−1/2AD−1/2x = 2 · 2 + 3(n − 7)/2 + (n + 1)/2 = 2n − 6.

So,
xT Nx

xT x
=

2n − 6

2n − 2
= 1 − 2

n − 1
.

So, we learn that the spectral gap of the complete binary tree is at most 2/(n − 1).

Still, that computation was not as much fun as it could have been. So, we’ll derive a simpler way
of bounding spectral gaps.

5.6 Comparison with Laplacians

To focus on the spectral gap, it is convenient to shift the eigenvalues of N so that the gap occurs
near zero. To this end, we consider the matrix

L def
= I − N = D−1/2(D − A)D−1/2,

which is called the normalized Laplacian matrix. The eigenvalues of L will be denoted λ1 ≤ λ2 ≤
· · · ≤ λn, and satisfy

λi = 1 − µi,

where µi is the ith largest eigenvalue of N .
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We will exploit the fact that the normalize Laplacian is a scaling of an even simpler matrix: the
Laplacian of a graph which is given by

L = D − A.

We will show that one can use a bound on the smallest non-zero eigenvalue of L to obtain a bound
on the smallest non-zero eigenvalue of L, which will be very helpful as the eigenvalues of Laplacians
and normalized Laplacians are particularly easy to bound. The reason is that

xT Lx =
∑

(i,j)∈E

(x(i) − x(j))2. (5.1)

To exploit this formula to bound the second-smallest eigenvalue of the normalized Laplacian, note
that

λ2 = min
S of dim 2

max
x∈S

xT D−1/2LD−1/2x

xT x

= min
S of dim 2

max
y∈S

yT Ly

yT Dy
,

by setting y = xD−1/2.

So, to upper bound λ2 for the complete binary tree, it suffices to take S to be the span of the all-1’s
vector and the vector that is 0 at the root, 1 on the right sub-tree, and −1 on the left subtree. Call
this later vector x. So, any vector in this vector space can be written as a multiple of α1 + x. We
then have

(α1 + x)T L(α1 + x) = xT Lx = 2,

as adding a constant α to each vertex does not change expression (5.1). By a little calculus, one
can show that

(α1 + x)T D(α1 + x) ≥ xT Dx,

which is the sum of the degrees of the vertices other than the root.

5.7 Planar Graphs

For example, we can also use this argument to get a bound on the spectral gap of the n-by-n grid.
If n is even, we create a vector that assigns 1 to the left-half and −1 to the right half. We will then
have xT Lx = 4n, and xT x equal to the sum of the degrees of vertices in the graph, which is just a
little under 4n2. So, we get an upper bound on the second-smallest eigenvalue of the normalized
Laplacian that is just a little larger than 1/n.

To describe a better test vector, let me describe the vertices of the grid as pairs (i, j). Then, if we
set x(i, j) = i−n/2, we get a stronger bound. A little arithmetic shows that the Rayleigh quotient
of this vector is some constant times 1/n2. This is almost tight.

In fact, one can prove similar bounds for all planar graphs. Teng and I proved that for every planar
graph, the second-smallest eigenvalue of the Laplacian satisfies λ2 ≤ 8dmax/n, where dmax is the
largest degree of a vertex in the graph, and n is the number of vertices.


