
Graphs and Networks Lecture 6

Spectral Partitioning

Lecturer: Daniel A. Spielman September 26, 2006

6.1 Cut Problems

Graph partitioning problems typically reqire one to divide the vertices of a graph into two or more
large pieces, while cutting as few edges as possible. If the graph is weighted, this probably means
minimizing the sum of the weights of the cut edges. There are many possible constraints that could
be put on the sizes of the pieces produced. For example, the graph bisection problem is to find a
set S ⊂ V such that |S| = b|V | /2c minimizing

|{(i, j) ∈ E : i ∈ S, j 6∈ S}| .

We will refer to a set S ⊆ V as a cut, by which we mean the partition of V into S and its
complement.

But, a strict bisection is often not exactly what one wants. There are various ways of loosening the
bisection constraint. We will consider two.

To define these, let wi,j denote the weight of the edge from i to j. For a set of edges F ⊆ E, let
w(F) be the sum of the weights of edges in F .

The first is determined by the sparsity of a cut, which we define to be

sp(S)
def
=

w(∂(S))

|S| |V − S|
,

where ∂(S) is the boundary of S: all edges with one endpoint in S and the other outside of S.

This measure weights a cut by the number of vertices inside, and values higher cuts that are more
balanced. The sparsest cut problem is to find the set S minimizing sp(S).

A slightly more useful term is given by conductance. Following Sinclair and Jerrum, we define
conductance by, setting

di =
∑

j

wi,j

to be the weighted degree of vertex i, and

d(S)
def
=

∑

i∈S

di.

Then, the conductance of a set S is given by

φ(S)
def
=

w(∂(S))

min(d(S), d(V − S))
.

6-1

Lecture 6: September 26, 2006 6-2

We can then consider the problem of finding the set S of minimum conductance.

Unforunately, we cannot solve any of these problems. Not only are they all NP-complete, but no
efficient approximation algorithms for them are known. That said, there are many good heuristics.
We will see one in the next section.

6.2 Relation to Laplacians

These graph partitioning problems are closely related to problems on Laplacians and normalized
Laplacians. To see why, we’ll start by examining the sparsest cut problem. We will see how to find
approximate solutions to this problem by using one of the greatest ideas in optimization: relaxation.

The idea of relaxation is to take a problem that is fundamentally discrete, and turn it into a
continuous problem. Here, our problem requires us to find a set S. To turn the problem into a
continuous one, we need to formulate it in an arithmetic fashion. To begin, we consider vectors
instead of sets. In particular, we will represent S by the vector χS .

For simplicity, let’s just consider the unweighted case. In this case, we need a formula for

|{(i, j) ∈ E : i ∈ S, j 6∈ S}| .

We will use
∑

(i,j)∈E

(v(i) − v(j))2.

Similarly, for |S| |V − S|, we will use
∑

i<j

(v(i) − v(j))2.

So, our problem becomes

min
v∈{0,1}n

∑

(i,j)∈E(v(i) − v(j))2.
∑

i<j(v(i) − v(j))2
.

To relax this problem, we will allow v to range over all of IRn. This will give a solution of lower
value, but it probably won’t be 0/1 valued. When we allow v to be real-valued, we see that some
simplification is possible: if we added a constant to each entry of v, then the ratio wouldn’t change.
So, we will normalize by assuming

∑

i v(i) = 0. In this case, we also have that
∑

i<j

(v(i) − v(j))2 = n
∑

v(i)2.

So, our relaxation becomes

min
v∈IRn

∑

(i,j)∈E(v(i) − v(j))2
∑

i<j(v(i) − v(j))2
= min

v∈IRn,v⊥1

∑

(i,j)∈E(v(i) − v(j))2
∑

i<j(v(i) − v(j))2

= min
v∈IRn,v⊥1

∑

(i,j)∈E(v(i) − v(j))2

n
∑

i(v(i))2

= min
v∈IRn,v⊥1

1

n

vT Lv

vT v
.

Lecture 6: September 26, 2006 6-3

But, by the Courant-Fischer theorem which we learned last lecture, this is just the second-smallest
eigenvalue of the Laplacian, divided by n. And, we can compute this. So, we learn that

min
S

sp(S) ≥ λ2(L)/n.

Moreover, we might hope that by computing the eigenvector of the second-smallest eigenvalue, we
might be able to turn it into a set S of low sparsity.

By similar reasoning, it is possible to show that

min
S

φ(S) ≥ λ2(L). (6.1)

Moreover, for the normalized Laplacian, there is a clean relationship going in the other direction,
knows as Cheeger’s Inequality. It was first proved by Cheeger in 1970 for manifolds. The version
here for graphs was proved by Jerrum and Sinclair.

Theorem 6.2.1.

min
S

φ(S) ≤
√

2λ2(L). (6.2)

Not only does the second-smallest eigenvalue of the normalized Laplacian provide an upper bound
on minS φ(S), the second-smallest eigenvector can also be used to find a cut.

6.3 Finding a cut

Let v be the eigenvector of the second-smallest eigenvalue of L. Recall that w = D−1/2v is a
right-eigenvector of the second-largest eigenvalue of the walk matrix M = D−1A.

To find a cut, we first assume that the vertices are ordered so that v(1) ≥ v(2) ≥ · · · ≥ v(n) (We
probably have to permute the vertices to achieve this). We then define the sets

Sj = {1, . . . , j} .

From the proof of Cheeger’s inequality, one can show that for some j,

φ(Sj) ≤
√

2λ2(L). (6.3)

So, while the cut we find is not necessarily optimal, it does satisfy some guarantee. In particular,
(6.1) tells us that if a graph has a set of small conductance, then λ2(L) is small. Conversely, (6.3)
tells us that if λ2(L) is small, then the corresponding eigenvector reveals a cut of small, but not
necessarily minimum, conductance.

6.4 Disclaimer

At this point, I should mention that there are many other heuristics for finding cuts of low conduc-
tance, and there are even algorithms that are known to provide better approximations.

But, I will continute to talk about the spectral approach because:

Lecture 6: September 26, 2006 6-4

• it does work unusually well,

• it is easy to compute v2 if you know a little numerical analysis, and

• I don’t have all day.

6.5 Image Segmentation

Everything that I’ve told you so far has been known since the 80’s. Around 2000, Shi and Malik
rediscovered some of this material, and applied it to the segmentation of images. This introduced
the technique to a new community, and generated quite a bit of interest.

Shi and Malik introduced what they called the Normalized Cut, given by

min
S

=

∑

(i,j)∈E:i∈S,j 6∈S wi,j

d(S)d(V − S)
,

and observed that a relaxation of the normalized cut was given by the normalized Laplacian.

Given an image, they considered the problem of dividing it up into regions. They did this by
creating a grid graph with one vertex for each pixel in the image. They then put weights on edges
of the graph whose strength was inversely related to their similarity. For example, if each pixel
p(i, j) is an element of IR3, say a RGB value, then they would set the weight of the edge from (i, j)
to (i + 1, j) to

e−
(p(i,j)−p(i+1,j))2

σ2 ,

where σ is kept constant throughout the construction. So, the more different the pixels were, the
lower the weight of the edge between them would be.

They then obtained eigenvectors corresponding to the top eigenvalues of the walk matrix, and used
them to partition the graph. They obtained relatively good results with relatively little work.

Here is an example that I did with picture of my daugher. All the files should be listed on the class
web page.

I’ll cut out three-fourths of the pictures so that the size of the graph I get is more managable.

Lecture 6: September 26, 2006 6-5

>> img = imread(’airplane.JPG’);

>> size(img)

ans =

960 1280 3

>> img = img(1:2:end, 1:2:end,:);

>> size(img)

ans =

480 640 3

>> image(img)

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

The code imgeig returns the adjacency matrix, a, and the first k eigenvectors. The parameter
support determines how far apart pixels can be and still be connected by an edge. As I explained
that only adjacent pixels are connected, we should use support 1. In class, I actually used support
2.

>> [V,E,a] = imgeig(img, 6, 1);

xsz =

480

ysz =

640

Iteration 1: a few Ritz values of the 20-by-20 matrix:

0

0

0

0

0

0

0

Iteration 2: a few Ritz values of the 20-by-20 matrix:

1.0e+08 *

0.0004

0.0005

Lecture 6: September 26, 2006 6-6

0.0008

0.0011

0.0020

0.0025

1.0000

Now, let’s look at the second eigenvector in greyscale.

>> w = V(:,2);

>> w = w-min(w);

>> w = w / max(w);

>> w = reshape(w,480,640);

>> wimg(:,:,1) = w;

>> wimg(:,:,2) = w;

>> wimg(:,:,3) = w;

>> image(wimg)

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

And, here is the cut generated by this eigenvector

>> w = w(:);

>> size(w)

ans =

307200 1

>> S = sparsecut(a,w);

>> imcut(img,S)

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

And, here are the cuts generated by the third through fifth eigenvectors.

Lecture 6: September 26, 2006 6-7

>> w = V(:,3);

>> S = sparsecut(a,w);

>> imcut(img,S)

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

>> w = V(:,4);

>> S = sparsecut(a,w);

>> imcut(img,S)

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

>> w = V(:,5);

>> S = sparsecut(a,w);

>> imcut(img,S)

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

I don’t claim that these cuts are ideal. But, if you measured quality of cut per line of matlab, these
are clear wins.

