1:37 PM

weighted
$$elge \rightarrow tesistor$$

tesistonce = $\frac{1}{\sqrt{e}ight}$
Conductance = $\frac{1}{\sqrt{e}ight}$
Ohm's Law: $\frac{1}{2}(x_{1}y) = (awent flow from x + y)$ satisfies
 $\frac{1}{(x_{1}y)} = \frac{(V(x) - V(t))}{T_{x_{1}y}} = (V(x) - V(t))C_{x_{1}y}$
so, $\frac{1}{(x_{1}y)} = -\frac{1}{2}(y_{1}t)$
Kirchoff's (arreat law:
if node x not connected to battery,
total (awent flow out of x = 0)
i.e. $\sum_{y \to x} \frac{1}{2}(x_{1}t) = 0$
Combining with Ohm's (aw, says
 $O = \sum_{y \to x} \frac{1}{2}(x_{1}t) = \sum_{y \to x} (V(x) - V(t))C_{x_{1}y}$

, - Jux

Y~x '

V(A) B a weighted average of nors

Gives one equation for each non-terminal vertex.

EL.

Def
$$f: V \rightarrow \mathbb{R}$$
 is harmoniz of $W \subseteq V$
if $\forall w \in W$
 $f(w) = \frac{1}{dw} \sum_{y \neq w} C_{w,y} f(y)$

Len If G is connected,
$$(U \subseteq V, W \neq V)$$

and f and g are har on on iz on (W) ,
and $\forall x \notin W = f(x) = f(g)$
then $f = g$

Tof. (onsider h = -f - g. Is harmoniz on W. $h(\mathcal{A}) = O \quad \forall \neq \notin W$.

Now, let
$$h(z) = \sum_{Y \neq z} \frac{C_{2H}}{dz} h(t)$$

then $h(z) = \sum_{Y \neq z} \frac{C_{2H}}{dz} h(t)$
as 1. $h(t) \leq h(z)$
2. $\sum_{Y \neq z} \frac{C_{2H}}{dz} = 1$
 $y_{N2} \frac{dz}{dz}$
3. $C_{2H} = 0$
we know $h(t) = h(z)$
So, by incluction, for all y
reachable from z , $h(t) = h(z)$
Jucluding $y \in U - W = > h(z) = 0$
Similarly, can show $\min_{X} h(z) = 0$.
 z
So, $h = 0$.

Bat, do voltages exist?

Yes.

Given a graph, nodes S and t,
want a
$$f: U \rightarrow \Pi Z$$
 sit.
 $f(S) = 1$

7 ~I

$$F(X) = \Pr\left[a \text{ tand wolth from x hits state t}\right],$$

$$C(early, F(S) = 1, F(X) = 0, \text{ and}$$

$$F(X) = \sum_{Y \to X} \Pr\left[\text{first step from x to } Y\right] F(Y)$$

$$= \sum_{Y \to X} \frac{C_{XY}}{dx} F(Y)$$
So, F satisfies the equations and by unique ness, F = U.

The effective Conductance between S and t
is the total current flow when
$$V(s)=1$$
, $V(t)=0$
Let S check its well-defined. Namely, that
 $\sum_{x \to s} \overline{z}(s,t) = \sum_{x \to t} \overline{z}(t,t)$

$$O = \sum_{x} \sum_{y \sim x} \hat{z}(x, y) \quad (as \quad \hat{z}(x, y)) = -\hat{z}(y, x))$$

$$= \sum_{y \sim s} \hat{z}(s, y) + \sum_{y \sim x} \hat{z}(t, y) + \sum_{x \in U - \{s, x\}} \sum_{y} \hat{z}(x, y)$$

$$So_{x} = \sum_{y \sim s} \hat{z}(s, y) + \sum_{y \sim t} \hat{z}(t, y)$$

$$E[# times return to 5 before htt t] = ds Refewhere $Refe = \frac{1}{Ceff}$ is effective resistance$$

Generally, can show

1 L

Finally, if flow I from s to t,
Voltages V setisfy

$$Lv = (X_s - X_t)$$

So, $v = L^t (X_s - X_t)$
and, for any x and y, potential diff between
 t and y B $v(B) - v(Y)$
 $= (X_X - X_Y)^T L^t (X_s - X_t)$