weighted edge \Rightarrow resistor

$$\text{Resistance} = \frac{1}{\text{weight}}$$

$$\text{Conductance} = \text{weight}$$

Ohm's Law: $i(x,y) =$ current flow from $x \rightarrow y$ satisfies

$$i(x,y) = \frac{(V(x) - V(y))}{C_{x,y}} = \frac{(V(x) - V(y))C_{x,y}}{C_{x,y}}$$

so, $i(x,y) = -i(y,x)$

Kirchhoff's Current Law:

if node x not connected to battery,

total current flow out of $x = 0$

i.e.

$$\sum_{y \sim x} i(x,y) = 0$$

Combining with Ohm's Law, says

$$0 = \sum_{y \sim x} i(x,y) = \sum_{y \sim x} \left(\frac{(V(x) - V(y))C_{x,y}}{C_{x,y}} \right)$$

$$0 = \frac{dx}{C_{x}} V(x) - \sum_{y \sim x} C_{x,y} V(y)$$

so, $V(x) = \frac{1}{dx} \sum_{y \sim x} C_{x,y} V(y)$, where $dx = \sum_{y \sim x} C_{x,y}$
$V(k)$ is a weighted average of $v(k)$

Gives one equation for each non-terminal vertex.

Ex.

\[
\begin{array}{ccc}
1 & \frac{1}{2} & 0 \\
\sqrt{\frac{1}{3}} & \sqrt{\frac{1}{3}} & 0 \\
\sqrt{\frac{1}{4}} & \sqrt{\frac{1}{4}} & 0 \\
\end{array}
\]

Def \(f : V \rightarrow \mathbb{R} \) is harmonic on \(W \subseteq V \) if \(f(u) \) we W

\[
f(u) = \frac{1}{d_w} \sum_{w \in w} C_{uw} f(w)
\]

Lem: If \(G \) is connected, \(W \subseteq V \), \(W \neq V \) and \(f \) and \(g \) are harmonic on \(W \), and \(V \setminus W \) \(f(V) = f(g) \) then \(f = g \)

pf: Consider \(h = f - g \). \(h \) is harmonic on \(W \). \(h(t) = 0 \) \(\forall t \in \partial W \).
Now, let \(h(z) \) be maximum.

Then \(h(z) = \sum_{y \in z} \frac{C_{yz}}{d_{z}} \cdot h(y) \)

as
1. \(h(y) \leq h(z) \)
2. \(\sum_{y \in z} \frac{C_{yz}}{d_{z}} = 1 \)
3. \(C_{yz} > 0 \)

we know \(h(y) = h(z) \)

So, by induction, for all \(y \) reachable from \(z \), \(h(y) = h(z) \)

Including \(y \in V - W \Rightarrow h(z) = 0 \)

Similarly, can show \(\min_{z} h(z) = 0 \).

So, \(h = 0 \).

This implies the solution to a harmonic system is unique.

But, do voltages exist?

Yes.

Given a graph, nodes \(s \) and \(t \), want \(f: V \rightarrow \mathbb{R}^+ \)
\(f(s) = 1 \)
\[f(A) = 0 \]
\[f \text{ harmonic on } U - \{s, t\} \]

Try

\[F(x) = \Pr \left[A \text{ and walk from } x \text{ hits } s \text{ before } t \right] . \]

Clearly, \(F(s) = 1 \), \(F(t) = 0 \), and

\[F(x) = \sum_{y \sim x} \Pr[\text{first step from } x \to y] F(y) \]

\[= \sum_{y \sim x} \frac{c_{xy}}{c_x} F(y) \]

So, \(F \) satisfies the equations and by uniqueness, \(F = U \).

The effective conductance between \(s \) and \(t \)

is the total current flow when \(U(s) = 1, U(t) = 0 \)

Let's check its well-defined. Namely, that

\[\sum_{x \sim s} \frac{\xi}{c_x} (s, x) = \sum_{x \sim t} \frac{\xi}{c_x} (x, t) \]
\[O = \sum_{x} \sum_{y \sim x} i(x, y) \quad (\text{as } i(x, y) = -i(y, x)) \]

\[= \sum_{y \sim s} i(s, y) + \sum_{y \sim t} i(t, y) + \sum_{x \in U - \{s, t\}} \sum_{y} i(x, y) \]

\[= 0 \]

so, \(O = \sum_{y \sim s} i(s, y) + \sum_{y \sim t} i(t, y) \) \(\checkmark \)

What is chance hit \(t \) before return to \(s \)?

Denoted \(P_{s \rightarrow t} \), also called escape probability

\[= \sum_{y \sim s} \Pr[\text{first step to } y] \cdot (1 - F(y)) \]

\[= \sum_{y \sim s} \frac{c_{s, y}}{ds} (U(s) - U(y)) = \frac{1}{ds} \sum_{y \sim s} i(s, y) = \frac{1}{ds} \text{Ceff} \]

From this, can show

\[E[\# \text{times return to } s \text{ before hit } t] = ds \text{ Reff} \]

where \(\text{Reff} = \frac{1}{\text{Ceff}} \) is effective resistance

Generally, can show
Finally, if flow I from s to t, voltages V satisfy

$$LV = (X_s - X_t)$$

so, $V = L^+ (X_s - X_t)$

and, for any x and y, potential diff between x and y is $V(x) - V(y)$

$$= (X_x - X_y)^T L^+ (X_s - X_t)$$

\Rightarrow Pot diff between x and y when flow I current from s to t

$$= Pot diff between s and t when flow I current from x to y