
Graphs and Networks out: September 26, 2006

Problem Set 1-Ugrad

Lecturer: Daniel A. Spielman due: October 10, 2006

1 Homework Policy

You may discuss the problems with other students. But, you must write your solutions indepen-
dently, drawing on your own understanding. You should cite any sources that you use on the
problem sets other than the textbook, TA and instructor. This means that you should list your
collaborators.

You may not search the web for solutions to similar problems given out in other classes. If you
think this policy needs any clarification, please let me know.

1. In the following problems, G = (V,E) is an undirected, connected graph. Let di be the degree
of vertex i, let D be the diagonal matrix with diagonal d1, . . . , dn, and let A be the adjacency
matrix of G. Let M = D−1A.

(a) Prove that the only vectors v satisfying

Mv = v

are constant vectors. Hint: Modify the proof of Lemma 4.3.1 from Lecture 4.

(b) Prove that if G is bipartite, then there exists a vector v satisfying

Mv = −v.

Hint: Modify the a vector from (1a) using the bipartition. If you are stuck, first consider
the example of the graph with two vertices and one edge.

(c) Prove that if G is connected and there exists a vector v satisfying

Mv = −v,

then G is bipartite.
Hint: Modify the proof of (1a).

2. Let G = (V,E) be a directed, strongly connected graph. As in Lecture 2, we let d+
i be the

out-degree of vertex i, let D be the diagonal matrix with diagonal d+
1 , . . . , d+

n , let A be the
adjacency matrix of G, and let M = D−1A. We will now prove that if r is a vector that
satisfies

rM = r, and r(1) > 0,
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then r must be non-negative.

Our proof will use the following matrix:

M∗ def= (1/n)
n∑

i=1

M i.

(a) Prove that if r = rM , then r = rM∗.

(b) Prove that M∗1 = 1.

(c) Prove that M∗ has no negative or zero entries (this is the interesting part).

We may now conclude that a vector r satisfying r = rM and r(1) > 0 must be non-negative
by observing that this implies:

∀j, r(j) =
∑

i

r(i)M∗
i,j ,

which implies that
∀j, |r(j)| ≤

∑
i

|r(i)|M∗
i,j , (1)

and so ∑
j

|r(j)| ≤
∑

j

∑
i

|r(i)|M∗
i,j

=
∑

i

|r(i)|
∑

j

M∗
i,j

=
∑

i

|r(i)| ,

as M∗1 = 1 implies
∑

j M∗
i,j = 1. Note that if the “≤” in the inequality above was a “<”,

then we would have a contradiction.

(d) Prove that if r has negative entries, then we obtain such a contradiction by showing that
the “≤” in the inequality in (1) must be a “<”.

3. Let G be an undirected, connected graph. Let L = D − A be its Laplacian matrix, and let
L = D−1/2(D −A)D−1/2 be its normalized Laplacian matrix. Let λ2 be the second-smallest
eigenvalue of L, and let λ̃2 be the second-smallest eigenvalue of L. Prove that

λ̃2 ≤ λ2.

Hint: use the Courant-Fischer Theorem.


