
Graphs and Networks out: October 25, 2006

Problem Set 3-Ugrad

Lecturer: Daniel A. Spielman due: November 7, 2006

1 Homework Policy

You may discuss the problems with other students. But, you must write your solutions indepen-
dently, drawing on your own understanding. You should cite any sources that you use on the
problem sets other than the textbook, TA and instructor. This means that you should list your
collaborators.

You may not search the web for solutions to similar problems given out in other classes. If you
think this policy needs any clarification, please let me know.

2 Corrections Made

1. (10/27/06) Changed “a leaf” to “any leaf” in the second sentence of problem 1.

2. (10/27/06) Earlier I wrote that the FKG inequality dealt with “indicator functions”, whereas
I should have said “increasing functions”. The correction has been made.

3. (10/27/06) In problem 3, I made it clear that in part (b) you should just deal with one k,
and in part (d) forgot to divide (1 + ε) ln n by n. Both corrections have been made.

4. (10/27/06) In problem 4, I’ve added a statement in parts (a) and (b) saying that you just
need to do these for n large.

3 The Problems

1. Percolation on k-ary Trees

Consider the percolation problem on infinite k-ary trees with probability p of keeping each
edge. Let xd(p) denote the probability that the root is connected to any leaf in the k-ary tree
of depth d. In the base case, d = 0, the tree consists of a single vertex, and by assumption
x0(p) = 1.

(a) Write an expression for xd+1(p) in terms of xd(p). In particular, find a function f(x, p)
such that

xd+1(p) = f(xd(p), p).
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(b) Show that for every ε there exists a constant cε such that if p = (1 + ε)/k and x < cε,
then

f(x, p) > x.

You constant cε should be a function of ε alone, and in particular not depend on k.

It is easy to show that xd+1(p) ≤ xd(p) for all d. So, if you’ve proved part (b), you may now
conclude that xd ≥ cε for all d.

2. FKG Inequality

Let T k
d (p) be the distribution on graphs obtained by keeping each edge of the depth-d complete

k-ary tree with probability p.

An increasing function on the space of graphs is a function f(G) such that if H is a subgraph
of G, then f(H) ≤ f(G). The FKG Inequality says that if f and g are increasing functions
then

EG←T k
d (p) [f(G)g(G)] ≥ EG←T k

d (p) [f(G)]EG←T k
d (p) [g(G)] .

For G ← T k
d (p), let A(G) be the event that G contains a path from the root to a leaf. Let

B(G) be the event that the root is connected to all of its k children.

Prove that for p = (1+ε)k, there exists a constant c, independent of d but possibly depending
on k and ε, such that

PG←T k
d (p) [A(G) and B(G)] ≥ c.

Hint: If you use the result of the first problem, this problem is easy.

3. Threshold for connectivity

Consider the random graph model G(n, p), where p = 2 ln n/n. We will prove that a graph
chosen from this distribution is almost certainly connected. (Hint: this problem does not
require any technique more sophisticated than the union bound)

(a) Prove that it is unlikely that there is any vertex with no neighbors.

(b) The graph is disconnected if and only if there exists a subset of the vertices ∅ ⊂ S ⊂ V
such that G contains no edges between S and V − S. Prove for each 0 < k < n that
it is unlikely there is any set S of size k such that G contains no edges between S and
V − S. (that is, just prove it for each particular k)

(c) Prove that it is unlikely that a graph chosen from the distribution G(n, p) is disconnected.
(that is, sum the bound from part (b) over k)

(d) [Extra Credit] Prove this for p = (1 + ε) ln n/n.

4. Degree-3 vertices

Consider a random graph from the distribution G(n, p), with p = 1/n. We will show that it
is very likely that such a graph contains a vertex of degree at least 3. (Actually, we could do
this for much lower values of p)
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(a) Prove that there is a constant c such that the expected number of vertices of degree at
least 3 is at least cn. (it suffices to do this for n large)
Hint: Compute a lower bound on the probability that a vertex has degree at least 3.
You could do this by computing the probability that a vertex has degree exactly 3, or
by computing the probability that a vertex has degree 0, 1, or 2.

(b) Assume n is even and arbitrarily divide the vertices in half, into sets A and B where
|A| = n/2. Find a constant c such that the probability that a vertex in A has at least 3
neighbors in B is at least c. Now, prove that the probability that there is no vertex in
A with at least 3 neighbors in B goes to zero as n goes to infinity.


