
Graphs and Networks out: November 9, 2006

Problem Set 4-Grad

Lecturer: Daniel A. Spielman due: November 28, 2006

1 Corrections Made

1. (11/13/06) Clarified definition of sp(S) in problems 4 and 5.

2. (11/27/06) Fixed two details in problem 5: replaced αk/2 by αk, and corrected the formula
for the number of matchings in a graph with 2n vertices.

2 Problems

1. Sparsity and Conductance For a graph G = (V,E) and a partition of its vertices C1, . . . , Ck,
we define the sparsity of the partition by

sp(C1, . . . , Ck) =
k∑

i=1

|∂(Ci)|
|Ci|

,

where ∂(Ci) denotes the set of edges leaving Ci. Define the conductance of a partition by

φ(C1, . . . , Ck) =
k∑

i=1

vol(∂(Ci))
vol(Ci)

,

where vol() of a set of edges is the sum of their weights, and vol() of a set of vertices is the
sum of their weighted degrees.

Describe a graph in which the partition C1, C2 minimizing sp(C1, C2) and the partition D1, D2

minimizing φ(D1, D2) satisfy C1 ∩ D1 = ∅ and |C2 ∩D2| > n/4, where n is the number of
vertices in the graph.

If you cannot prove that the obviously minimizing partitions are minimizing, just make your
intuitive argument as precise as possible.

2. Assortativity Given a graph G = (V,E), we define its assortativity as follows. Let pk be
the fraction of vertices of degree k. Let

qk =
kpk∑
j jpj

.

The quantity qk is the probability that a random endpoint of a randomly chosen edge has
degree k. (If you look at Newman’s paper, he defines this as qk+1, but I think he’s got it
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wrong. In particular, his equation (4) agrees with my interpretation) Define ej,k to be the
probability that a randomly chosen edge has degree j at its first endpoint and degree k at
the other. (that is, we choose a random edge and a random endpoint)

Define

σ2
q

def=
∑

k

k2qk −

(∑
k

kqk

)2

.

Finally, define

r(G) =
1
σ2

q

∑
j,k

jk(ej,k − qjqk).

a. find a graph G with r(G) = 1.
b. find a graph G with r(G) = −1.

3. Let G be a random directed graph on n vertices in which each vertex has out-degree 1. That
is, for every vertex i, we choose a j at random and add edge (i, j) to the graph. For a vertex
v, let R(v) denote the set of vertices reachable from v.

a. Prove that for a fixed vertex v, P [|R(v)| <
√

n/10] < 1/3 .
b. Prove that for a fixed vertex v, P [|R(v)| > 10

√
n] < 1/3 .

Note that these constants are pretty loose. Much tighter bounds are possible.

4. You can’t cluster a random graph. Consider a random graph distributed according to
G(n, p), with p = 10 lnn/(n − 1). Prove that there exists an absolute constant α > 0 such
that

P
[
min

S
sp(S) < α

]
< 1/3,

where
sp(S) =

|∂(S)|
min (|S| , |V − S|)

.

Note that you can also prove this for φ(S), it’s only slightly trickier.

5. You can’t cluster a cycle plus a matching. Let G be a cycle plus a random matching.
Prove that there exists an absolute constant α > 0 such that

P
[
min

S
sp(S) < α

]
→ 0,

as n goes to infinity, where the minimum is taken over all sets of at most half the vertices.

a. First, prove that it is unlikely that any particular set of k ≤ n/2 vertices has fewer than
αk matching edges leaving it.
Hint: There are many ways to do this. One way involves observing that the number of
matchings on a graph with 2n vertices is (2n − 1)!! def= (2n − 1)(2n − 3)(2n − 5) · · · (1).
However you do it, you might find useful the bound

n! ≥ nn/en.
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b. Now, if you had to sum over all sets of size k, there is no way you could prove the claimed
result. But, you don’t have to! It is only necessary to consider sets S with fewer than
αk cycle edges leaving. Prove an upper bound on the number of such sets, and then
prove the claimed result.


