
Graphs and Networks Lecture 11

Random Graphs : Markov’s Inequality

Lecturer: Daniel A. Spielman October 11, 2007

11.1 Introduction

In this lecture, we will consider the Erdos-Renyi model of random graphs. Our motivation is
not to present them as a model of graphs that occur in real life—as it is rare to find graphs that
behave like Erdos-Renyi graphs. Rather, we present them because they have many counter-intuitive
properties, and they provide the most important family of counter-examples to natural conjectures
about graphs. Also, their study provides great vehicle for teaching probabilistic analysis.

In this lecture, we will encounter the following quantities associated with graphs.

• Girth. We write g(G) to denote the girth of a graph G. It is the length of the shortest cycle
in G

• Clique number. We write ω(G) to denote the number of vertices in the largest clique in G.
That is, the largest k for which there exists a set S ⊆ V for which all edges between pairs of
vertices in S are in G.

• Independence number. Written α(G), the independence number is the size of the largest set
of vertices in G that has no edges. It is the clique number of the complement graph of G (the
graph that has edges exactly where G does not).

• Chromatic number, written χ(G). A graph is said to be k-colorable if there is a mapping
f : V → {1, . . . , k} so that for every edge (u, v), f(u) 6= f(v). The chromatic number of G is
the least k for which G is k-colorable. For example, a bipartite graph is 2-colorable.

Intuitively, one might think that a graph of large girth can be colored with few colors. At the
end of lecture, we will see a result of Erdos which tells us this is not true. We will construct
the counter-example by the probabilistic method. That is, we will describe a randomized process
for constructing a graph, and prove it has the desired properties with non-zero probability. This
implies that a graph with the desired properties exists.

11.2 Erdos-Renyi Model

The Erdos-Renyi model is specified by two parameters: the number of vertices in the graph n,
and the probability of an edge p. Given n and p, we choose a graph on n vertices by including an
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edge between each pair of vertices with probability p, independently for each pair. Think of this as
flipping a coin for each possible edge. I will write G(n, p) to denote this distribution, and

G← G(n, p)

to indicate that G is a random graph chosen from this distribution.

11.3 Markov’s Inequality and Expectation

In this lecture, we will focus on using expectations of random variables. Recall that if a variable
X has the distribution

Pr [X = xi] = pi,

then
E [X] =

∑
i

xipi.

The most important property of expectation is that the expectation of the sum of two variables is
always the sum of their expectations:

E [X1 + X2] = E [X1] + E [X2] .

Note that this assertion requires no assumptions! In particular, X1 and X2 do not need to be
independent. This is what makes it so powerful.

If X is a random variable that can never be negative, then Markov’s inequality tells us that for all
k

Pr [X ≥ k] ≤ E [X] /k.

To see why this should be true, note that if the probability that X is greater than k is p, then the
expected value of X would have to be at least pk.

We will mainly use the following corollary of Markov’s inequality:

Pr [X ≥ 1] ≤ E [X] .

11.4 Other Facts from Probability

We will also use the union bound, which says that for events A and B,

Pr [A or B] ≤ Pr [A] + Pr [B] .

For A and B independent, recall that

Pr [A and B] = Pr [A] Pr [B] .
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11.5 Clique Number

We will now show that for p = 1/2, the clique number of G is at most (2 + ε) log2 n + 1 with high
probability, for all ε > 0. To do this, fix some ε > 0, fix k = d(2 + ε) log2 n + 1e, and let S1, . . . , Sz

be the subsets of vertices of size k. So,

z =
(

n

k

)
.

Let Xi be a random variable that is 1 if Si is a clique in G. Let

X =
∑

i

Xi.

If X < 1, then the largest clique in G has size less than k. To show that this is probably the case,
we will prove that E [X] is very small. To do this, we will prove that E [Xi] is small for each i. As
Xi can only take the values 0 and 1,

E [Xi] = Pr [Xi = 1] .

We have Xi = 1 only if Si is a clique, which happens exactly when all of the
(
k
2

)
edges between

vertices in Si appear in the graph. This happens with probability

(1/2)(
k
2) =

(
(1/2)(k−1)/2

)k
=

(
(1/2)(2+ε) log2 n/2

)k
=

(
(1/2)(1+ε/2) log2 n

)k
=

(
n−(1+ε/2)

)k
.

So,

E [X] =
∑

i

E [Xi] =
(

n

k

) (
n−(1+ε/2)

)k
≤ nk

(
n−(1+ε/2)

)k
=

(
n−(ε/2)

)k
= n−εk/2 → 0.

as n goes to infinity. So, in summary

PrG←G(n,1/2) [ω(G) ≥ (2 + ε) log2 n + 1] ≤ n−εk/2 → 0.

We could of course carry this argument out for general p. This would give

PrG←G(n,p) [ω(G) ≥ k] ≤
(
np(k−1)/2

)k
.

11.6 Girth

In G(n, p), the expected number of edges attached to each vertex is p(n− 1). Next lecture, we will
see that it must be close to this for all vertices. For now, let’s set d = p(n− 1), and ask ourselves
how large the girth can be of a graph in which every vertex has degree d. We will then show that
this bound is almost achieved.

For a vertex v, let N(v) be the set of neighbors of v, and let N (k)(v) be the set of vertices that can
be reached from v by a path of length at most k. We have |N(v)| = d + 1. If g(G) > 4, then∣∣∣N (2)

∣∣∣ (v) = d(d− 1) + |N(v)| = d2 + 1.
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Similarly, if g(G) ≥ 2k + 1, then∣∣∣N (k)(v)
∣∣∣ = d(d− 1)k +

∣∣∣N (k−1)(v)
∣∣∣ = dk + 1.

But, there are n vertices, so
n ≥

∣∣∣N (k)(v)
∣∣∣ = dk + 1,

which implies

k < logd n =
log n

log d
.

If d = n1/j , this gives the bound g ≤ 2j + 1. We will now show that this is approximately tight.

Set p = n(1−ε)/g/n, for any ε > 0, and choose G ← G(n, p). We will prove that few of the vertices
of G will be in cycles of length g. It would be unreasonable to hope that there are no short cycles.

(In fact, the analysis from the previous section tells us that the expected number of triangles is(
n
3

)
p3 = n3(1−ε)/g/6 > 1.)

A g-cycle is described by a sequence of g vertices, giving the first vertex in the cycle, the second,
and so on. Actually, each g-cycle has 2g descriptions of this form: there are g choices for the first
vertex, and two directions in which the cycle can be traversed. Either way, we know that there are
most

n(n− 1) · · · (n− g + 1) ≤ ng

possible g-cycles. The probability that any given possible g-cycle appears in G is pg. So, the
expected number of g-cycles is at most

ngpg = (np)g =
(
n(1−ε)/g

)g
= n1−ε.

One can show that the expected number of j cycles for j < g is lower. So, the expected number of
cycles of length at most g is at most

gn1−ε.

By Markov’s inequality, this means that the probability that G has more than 2gn1−ε cycles of
length at most g is at most 1/2, and that the probability that G has more than n/2g cycles of
length up to g is at most

gn1−ε/(n/2g) = 2g2/nε.

So, we may conclude that the probability that more than n/2 of the vertices are involved in cycles
of length up to g is at most

2g2/nε.

Note that all of these bounds go to zero as n grows and g stays fixed.

Consider removing all the vertices in G that are involved in cycles of length up to g. With probability
1− 2g2/nε, at least n/2 vertices remain, and the remaining graph has girth at least g. You might
be wondering how many edges are left in the graph. We will later learn techniques that show that
with high probability at least 1/4 of the edges remain.
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11.7 High Girth and Chromatic Number

Theorem 11.7.1 (Erdos). For every g and x, there exists a graph G of girth at least g and
chromatic number at least x.

Proof. As in the previous section, set p = n(1−ε)/g/n, and choose G from G(n, p). Use ε = 1/2, so
p = n1/2g/n.

Then, remove all vertices from G in cycles of length up to g, and call the resulting graph G′. We
will show that G′ probably has high chromatic number.

We would like to say something like “χ(G′) ≥ χ(G)”, but I see no reason it should be true. Instead,
we use the inequalities

α(G) ≥ n

χ(G)
, (11.1)

and
α(G′) ≤ α(G). (11.2)

The first follows from the fact that each color class in a coloring is an independent set, and the
largest must have size at least n/χ(G). The second is because every independent set in G′ is also
an independent set in G. If we let n′ be the number of vertices in G′, we may combine these
inequalities to find

χ(G′) ≥ n′

α(G′)
≥ n′

α(G)
.

Let’s see what we can say about α(G). As α(G) is the clique number of the complement graph of
G, we may apply the results from the first section to count the expected number of independent
set in G of size a. Let X be the number of independent set in G of size a. We get

E [X] ≤
(
n(1− p)(a−1)/2

)a
.

To estimate this, we will use one of the most important inequalities in probability:

1− p ≤ e−p.

I suggest you memorize it.

We then compute

E [X] ≤
(
n(1− p)(a−1)/2

)a

≤
(
n(e−p)(a−1)/2

)a

=
(
n(e−p(a−1)/2)

)a
.

If we set
a =

4n lnn

n1/2g
+ 1,
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then we get (
n(e−p(a−1)/2

)a
=

(
n(e−2 ln n

)a
=

(
nn−2

)a = n−a.

So, the probability that α(G) exceeds a is at most n−a. Now, if α(G) ≤ a and n′ ≥ n/2, then

χ(G′) ≥ n′

α(G)
≥ n/2

4n ln n
n1/2g + 1

=
n1/2g

8 ln n + n1/2g−1
≥ n1/2g

9 ln n
.

If we fix g and let n grow, then this quantity grows as well, and so eventually becomes bigger than
x. So, to establish the existence of the desired graph G′, we just need to show that with some
reasonable probability, n′ ≥ n/2 and α(G) ≤ a. To do this, we examine the probability of failing.
We have

Pr
[
n′ ≤ n/2 or α(G) > a

]
≤ Pr

[
n′ ≤ n/2

]
+ Pr [α(G) > a] ≤ 2g2/nε + n−a → 0,

as n grows. So, the probability of G′ having the desired properties tends to 1, and so the desired
graph exists.

In fact, we only needed to show that the probability of G′ having the desired properties is greater
than 0


