Lecture 14: percolation on trees

Tuesday, October 23, 2007
12:44 PM

Physicists introduced percolation theory to help answer the following question: if
a porous rock is immersed in water, will the water reached the center of the rock?
To answer this question, they modeled the rock by a grid graph. We will model a
two-dimensional rock by a two-dimensional grid graph. The internal structure of
the rock is assumed to be random. Water can potentially flow along the edges.
Each edge is chosen to be "open" with probability p and "closed" with probability
1-p.water can flow along the open edges but not along closed edges.

As the boundary of the graph is in contact with water, water will reach the center
of the rock if the center vertex is connected by a path of open edges to the
boundary.

Instead of considering finite grid graphs, physicists prefer to consider the infinite
grid. They then ask how large p needs to be before some given vertex is probably
contained and in an infinite component of open edges. They called the critical
probability the probability below which this is zero and above which it is finite.
For the two-dimensional grid, the critical probability turns out to be one half.

In today's lecture we will consider percolation on infinite trees. We will start with
the infinite binary tree. | will present three proofs that the critical probability for
the infinite binary tree is one half.
Percolation on trees is related to many other interesting things, including:
Population dynamics
The spread of epidemics
The formation of the giant component in random graphs.
In the next lecture, we will use our study of percolation on trees to prove that

’FSV\ Kjt€7®/ gC g‘&*’gy\?:_{i—i

e

&_((); - g:_\ﬂ(wéeﬁ Coppoet of & has 2 cn weﬂt@l&)\

o Ao \7:-(:7\5:

VY~ _ L[w@es‘\— (mpoetr & & las = Clo_wn ue»—\\"Z@SZ%l

462 Page 1



G Elnip) o -

Instead of thinking about edges being opened or closed, as the physicists do, | will
talk about edges being present or not present. To be formal | will identify the
vertices of the complete binary tree with the strings over the alphabet 0/1.
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In case you don't, or in case you are uncomfortable and infinite trees,we will now
do a more concrete proof. We will consider the infinite tree as the limit of finite
trees of increasing depth. Let
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To do this, imagine a process in which each vertex in the component of gS

Goes through two states. It begins asleep, at some time it wakes up, has some
children, and then retires.
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We consider a process in which exactly 1 node is active in each time step.
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