Graphs and Networks Sep 11: Lecture 2 Daniel A. Spielman

EDLINE 2156769 1388989 1006412 5.5(4)	complete 98502 52909 45685 5.1(2)	astro-ph 22029 16706 14303	cond-mat 22016 16726 15451	hep-th 19085 8361 7676	SPIRES 66652 56627	NCSTRL 13169 11994
1388989 1006412	52909 45685	16706	16726	8361	56627	
1006412	45685					11994
		14303	15451	7676	477.448	
5.5(4)	5 1(9)			1010	47445	10998
	-3.1(2)	4.8(2)	3.65(7)	4.8(1)	11.6(5)	2.55(5)
2.966(2)	2.530(7)	3.35(2)	2.66(1)	1.99(1)	8.96(18)	2.22(1)
4.8(1.1)	9.7(2)	15.1(3)	5.86(9)	3.87(5)	173(6)	3.59(5)
1193488	44337	14845^{-1}	13861	5835	49002 [´]	6396
892193	39709	12874	13324	5593	43089	6706
7.3(7)%	85.4(8)%	89.4(3)	84.6(8)%	71.4(8)%	88.7(1.1)%	57.2(1.9)%
56	18	19	16	24	69	42
4.4(2)	5.9(2)	4.66(7)	6.4(1)	6.91(6)	4.0(1)	9.7(4)
21	20	14	18	19	19	31
.4 11 8 7	4.8(1.1) 193488 392193 7.3(7)% 56 4.4(2)	$\begin{array}{c ccccc} 4.8(1.1) & 9.7(2) \\ \hline & 9.3488 & 44337 \\ \hline & 92193 & 39709 \\ \hline & 7.3(7)\% & 85.4(8)\% \\ \hline & 56 & 18 \\ \hline & 4.4(2) & 5.9(2) \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Diameter in scientific collaborations

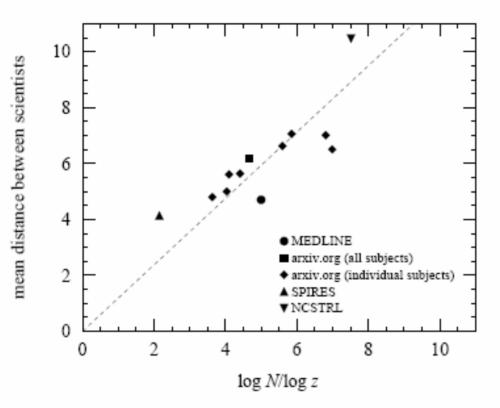


FIG. 3. Average distance between pairs of scientists in the various communities, plotted against the average distance on a random graph of the same size and average coordination number. The dotted line is the best fit to the data which also passes through the origin.

MEDLINE	complete		Los Alamos e-Print Archive			
	complete	astro-ph	cond-mat	hep-th	SPIRES	NCSTRL
2156769	98502	22029	22016	19085	66652	13169
1388989	52909	16706	16726	8361	56627	11994
1006412	45685	14303	15451	7676	47445	10998
5.5(4)	5.1(2)	4.8(2)	3.65(7)	4.8(1)	11.6(5)	2.55(5)
2.966(2)	2.530(7)	3.35(2)	2.66(1)	1.99(1)	8.96(18)	2.22(1)
14.8(1.1)	9.7(2)	15.1(3)	5.86(9)	3.87(5)	173(6)	3.59(5)
119348889219387.3(7)%564.4(2)21	$44337 \\39709 \\85.4(8)\% \\18 \\5.9(2) \\20$	$14845^{'}$ 12874 89.4(3) 19 4.66(7) 14	$13861 \\ 13324 \\ 84.6(8)\% \\ 16 \\ 6.4(1) \\ 18$	5835 5593 71.4(8)% 24 6.91(6) 19	49002' 43089 88.7(1.1)% 69 4.0(1) 19	$6396' \\ 6706 \\ 57.2(1.9)\% \\ 42 \\ 9.7(4) \\ 31$
						0.496(6)
	$1006412 \\ 5.5(4) \\ 2.966(2) \\ 14.8(1.1) \\ 1193488 \\ 892193 \\ 87.3(7)\% \\ 56 \\ 56 \\ 1006412 \\ 100641 $	$\begin{array}{cccccc} 1006412 & 45685 \\ 5.5(4) & 5.1(2) \\ 2.966(2) & 2.530(7) \\ 14.8(1.1) & 9.7(2) \\ \end{array}$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Small-World/Low Diameter/Clustering Coefficient

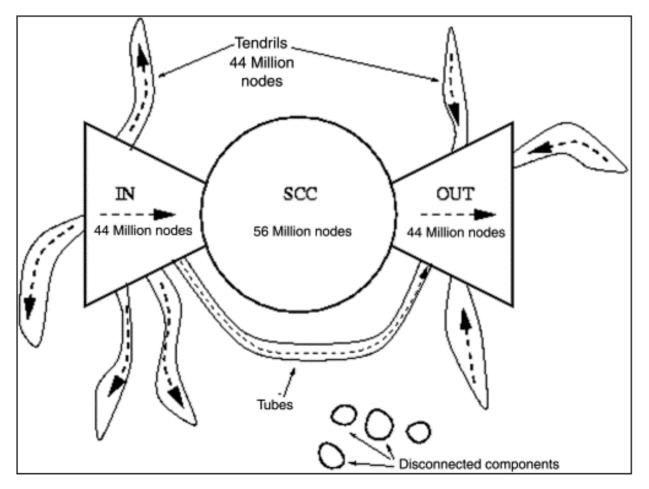
Table 1 Empirical examples of small-world networks						
	Lactual	Lrandom	$C_{\rm actual}$	$C_{\rm random}$		
Film actors	3.65	2.99	0.79	0.00027		
Power grid 🔬 🔨	18.7	12.4	0.080	0.005		
C. elegans	2.65	2.25	0.28	0.05		

Actors:n = 225226, ave degree = 61Power grid:n = 4,941, ave degree = 2.67C. elegans (neural network), n = 282, ave degree = 14

Strogatz-Watts (Nature vol 393, 4 June 1998): Experiments on k-regular graphs on n-nodes

	Group	Network	Туре	Size n	Assortativity r	Error σ_r
	а	Physics coauthorship	undirected	52 909	0.363	0.002
	а	Biology coauthorship	undirected	1 520 251	0.127	0.0004
	ь	Mathematics coauthorship	undirected	253 339	0.120	0.002
Social	с	Film actor collaborations	undirected	449 913	0.208	0.0002
	d	Company directors	undirected	7 673	0.276	0.004
	е	Student relationships	undirected	573	-0.029	0.037
	f	Email address books	directed	16 881	0.092	0.004
	g	Power grid	undirected	4 941	-0.003	0.013
Technological	h	Internet	undirected	10 697	-0.189	0.002
	i	World Wide Web	directed	269 504	-0.067	0.0002
	j	Software dependencies	directed	3 162	-0.016	0.020
	k	Protein interactions	undirected	2 115	-0.156	0.010
	1	Metabolic network	undirected	765	-0.240	0.007
Biological	m	Neural network	directed	307	-0.226	0.016
	n	Marine food web	directed	134	-0.263	0.037
	0	Freshwater food web	directed	92	-0.326	0.031

Mixing Patterns In Networks, M.E.J. Newman Phys. Rev. E 67, 026126 (2003)


	network	type	n	m	z	l	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
	film actors	undirected	449 913	25516482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company directors	undirected	7673	55392	14.44	4.60	-	0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253 339	496 489	3.92	7.57	-	0.15	0.34	0.120	107, 182
	physics coauthorship	undirected	52 909	245300	9.27	6.19	-	0.45	0.56	0.363	311, 313
social	biology coauthorship	undirected	1520251	11803064	15.53	4.92	-	0.088	0.60	0.127	<u>311, 313</u>
š	telephone call graph	undirected	47000000	80 000 000	3.16		2.1				<u>8, 9</u>
	email messages	directed	59912	86300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16881	57029	3.38	5.22	-	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810				3.2				265, 266
-	WWW nd.edu	directed	269504	$1\ 497\ 135$	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
atio	WWW Altavista	directed	203549046	2130000000	10.46	16.18	2.1/2.7				74
Ĩ	citation network	directed	783 339	6716198	8.57		3.0/-				351
information	Roget's Thesaurus	directed	1 0 2 2	5103	4.99	4.87	-	0.13	0.15	0.157	244
	word co-occurrence	undirected	460902	17000000	70.13		2.7		0.44		119, 157
	Internet	undirected	10697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
38	power grid	undirected	4 9 4 1	6594	2.67	18.99	-	0.10	0.080	-0.003	416
ğ	train routes	undirected	587	19603	66.79	2.16	-		0.69	-0.033	366
technological	software packages	directed	1 439	1 723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
sch	software classes	directed	1377	2213	1.61	1.51	-	0.033	0.012	-0.119	395
Ę.	electronic circuits	undirected	24097	53248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 2 9 6	1.47	4.28	2.1	0.012	0.011	-0.366	<u>6, 354</u>
	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
ical	protein interactions	undirected	2115	2240	2.12	6.80	2.4	0.072	0.071	-0.156	212
biologica.	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
bic	freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
	neural network	directed	307	2359	7.68	3.97	-	0.18	0.28	-0.226	416, 421

The Structure and Function of Complex Networks M.E.J. Newman, cond-mat/0303516 v1 15 Mar 2003

Graph Structure in the Web

Broder et. al., Computer Networks 33, (2000) pp.309-320

Altavista Crawl of 200M pages, 1.5B links

Graph Structure in the Web

Broder et. al., Computer Networks 33, (2000) pp.309-320

For two random nodes, directed path exists with prob 25%

Edge type	In-links (directed)	Out-links (directed)	Undirected
Average connected distance	16.12	16.18	6,83

Breadth-first search from random nodes in SCC:

Measure	Minimum depth	Average depth	Maximum depth
In-links	475	482	503
Out-links	430	434	444

As the table shows, from some nodes in the SCC it is possible to complete the search at distance 475, while from other nodes distance 503 is required. This allows us to conclude that the directed diameter of SCC is at least 28.

Power-law degree distributions

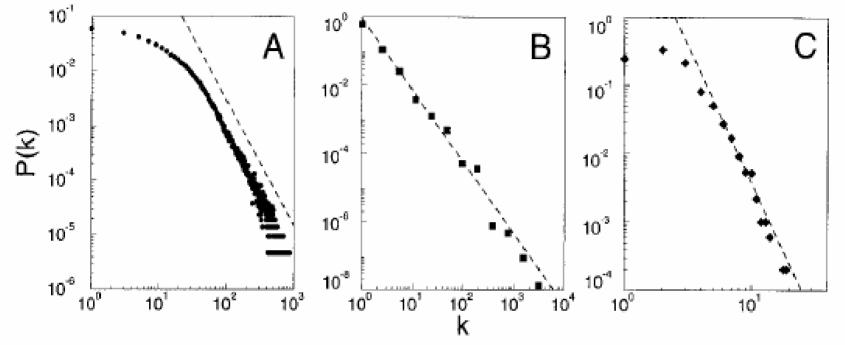
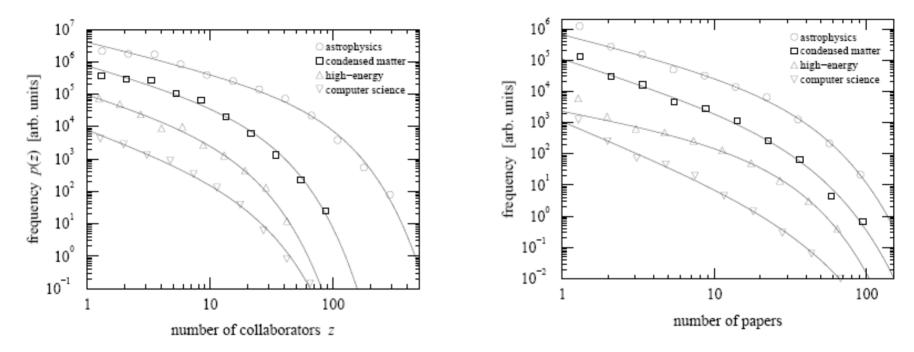


Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration graph with N = 212,250 vertices and average connectivity $\langle k \rangle = 28.78$. (B) WWW, N = 325,729, $\langle k \rangle = 5.46$ (6). (C) Power grid data, N = 4941, $\langle k \rangle = 2.67$. The dashed lines have slopes (A) $\gamma_{actor} = 2.3$, (B) $\gamma_{www} = 2.1$ and (C) $\gamma_{power} = 4$.

Emergence of Scaling in Random Networks, Barabasi and Albert, Science, vol 286, 15 Oct 1999

Power-Law Degree Distributions?



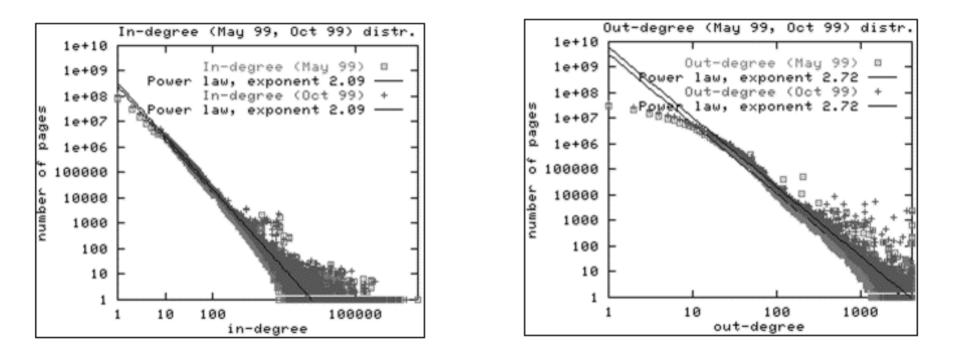

FIG. 1. Histograms of the number of collaborators of scientists in four of the databases studied here. The solid lines are least-squares fits to Eq. (1).

FIG. 2. Histograms of the number of papers written by scientists in four of the databases. As with Fig. 1, the solid lines are least-squares fits to Eq. (1).

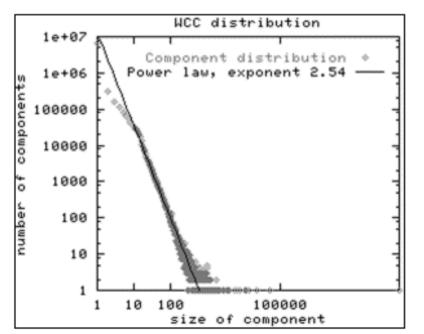
used. However, our data are well fitted by a power-law form with an exponential cutoff:

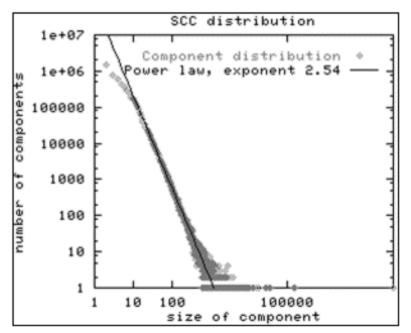
$$P(z) \sim p^{-\tau} e^{-z/z_o}$$
, (1)

Power-law degree distributions

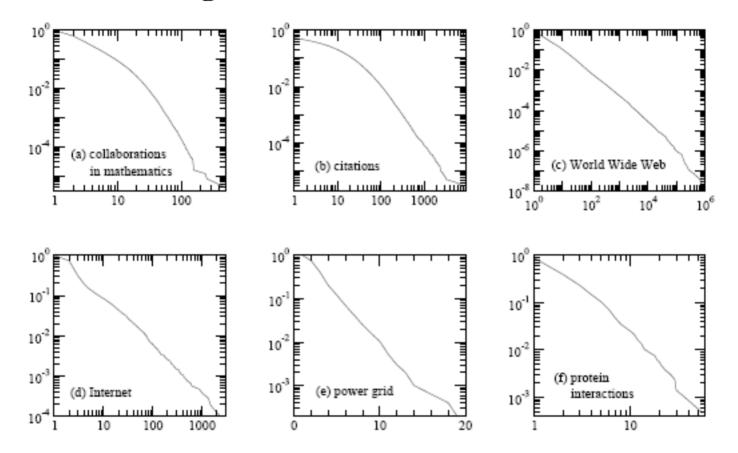
Graph structure in the Web, Broder et. al.,

Computer Networks Vol 33, No 1-6, June 2000, pp. 309-320


Analysis of Web Graph


Graph structure in the Web, Broder et. al.,

Computer Networks Vol 33, No 1-6, June 2000, pp. 309-320


Weakly-connected components (traverse edge either way) largest had 186m pages = 91%

Strongly-connected components (only following links) largest had 56m pages = 28%

Power-Law Degree Distributions?

The Structure and Function of Complex Networks M.E.J. Newman, cond-mat/0303516 v1 15 Mar 2003

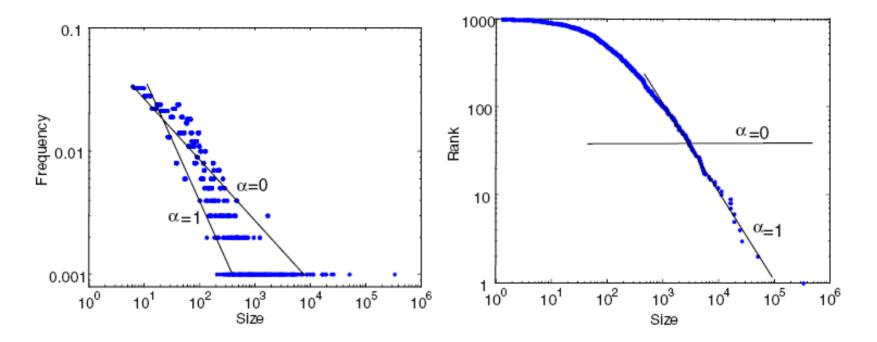
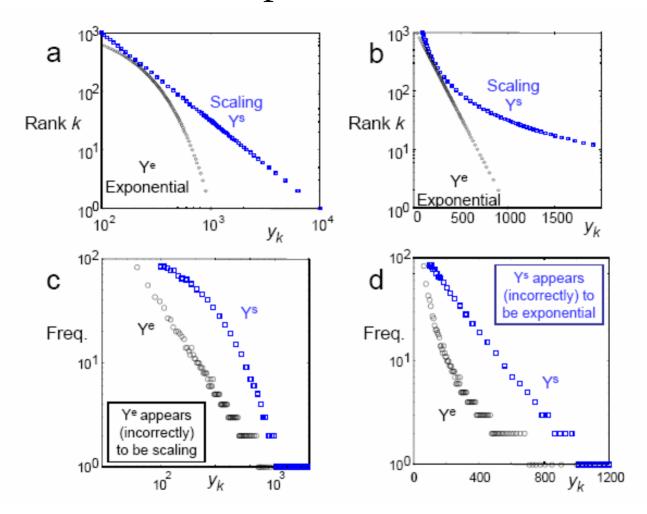



Figure 7: Size-frequency Plot on Log-log Scale (left) and Complementary Cumulative Distribution Plot on Log-log Scale (right) for 1000 Observations Sampled from a Pareto Distribution of the Second Kind with Parameters $\alpha = 1$ and $\beta = 100$

"More "normal" than normal: scaling distributions and complex systems" – Willinger, Alderson, Doyle, Li, Proceedings of the 2004 Winter Simulation Conference

Problems with these plots:

Towards a theory of scale-free graphs: Li, Alderson, Ranaka, Doyle, Willinger, arXiv:cond-mat/0501169 v2 18 Oct 2005