Lect 2: empirical analyses of graphs

Tuesday, September 11, 2007
8:30 AM

Disclaimer

These are my personal notes from this lecture. They may be wrong or inaccurate,
and have not carefully been edited. But, they are better than nothing.

I. Define a few quantities of interest in a graph
a. n=number of vertices
b. m =number of edges
C. dae=averagedegree=2m/n

d. Diameter:

i. The distance between two nodes is least number of edges in a path
connecting them. The diameter is the maximum over pairs of vertices of
the distance between them. That is, the distance between the furthest
pair.

e. Bisection size: least number of edges need to remove to divide graph into
parts, each having less than half the vertices. (NP complete)

f. If disconnected, the sizes of components (but why consider a disconnected
graph?) If many natural graphs, there is a very large connected component,
called the giant component.

Il. Before looking at real-world graphs, let's examine these quantities on some
archetypical graphs.
a. The path on n vertices:
i. Ave degree~2
ii. Diametern-1
iii. Bisection size 1
b. The grid on n vertices (sqrt(n) x sqrt(n)):
i. Avedegree~4
ii. Diameter ~ 2 sqrt(n)
iii. Bisection size sqrt(n).
c. The complete binary tree on n vertices, n = 2"k - 1.
i. Ave degree~2
ii. Diameter 2*log(n)
iii. Bisection size 2.
d. The hypercube on n vertices, n = 2d.
i. Ave degree log(n)
ii. Diameter log(n)
iii. Bisection size n/2.

| hope that these examples reveal that these parameters have little to do with

each other. Also note that you can glue two or more of these graphs together to
get strange things.
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Let me mention one more exceptional example.
e. An expander graph on n vertices in which each node has degree 3.
(one can construct one of these by choosing a 3-regular graph at random.
Margulis was one of the first to provide explicit constructions).
i. Ave degree 3
ii. Diameter 2 log, n+ 0O(1)
iii. Bisection size c*n for some constant c, independent of n.
This sort of graph will be the counter-example to many conjectures about graphs,
and is incredibly useful in some fields. We will encounter them again later.

The following table describes graphs was made on authors of papers in various
communities. A vertex is associated with each author, and an edge is put
between each pair of authors who have co-authored a paper. Below, max
distance is diameter, and mean distance is the average distance between
randomly chosen authors.

Los Alamos e-Print Archive

MEDLINE complete astro-ph cond-mat SPIRES NCSTRL
total papers 22029 21 2 :
total hors )} 36 i {
first initial only 1006412 14303 15451

£ iy M
mean authors per paper

TE per author

)

4.8{3}) 345

3.35(2) 2.66(1)

2.966(2)

colls

cutoff

A '

0.4(1.3)
1.1(2

stze of glant component
first initial only
as a percentage

2nd largest component

BA6(8)%  TLAB)% | SRI(LL% | 5T2(1.9)%
16 60
£4(1 18013
14 18 iG
0.43(1) 0.414(6) 0.348(6) 0.327(2) 0.726(8) 0.496(8)

i et
clustering coefficient

From "The structure of scientific collaboration networks" by M.E.J. Newman,
arXiv:cond-mat/0007214

How should we interpret these numbers? Newman's suggestion is to contrast the
mean distance (or the diameter), with what one would find in a random graph
with the same number of vertices and the same average degree. He finds that
the average distance between vertices is approximately what one would expect to
find in such a random graph: (log N / log ave-degree):
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FIG. 3. Average distance between pairs of scientists in the
various communities, plotted against the average distance on
a random graph of the same size and average coordination
number. The dotted line is the best fit to the data which also
passes through the origin.

Clustering Coefficients:

The clustering coefficient is a popular thing to examine in a graph. It measures
the likelihood that neighbors of a vertex are also neighbors. There are various
ways of measuring it. To begin, let's consider clustering at a particular vertex.
Look at all of its neighbors, and look at how many of those neighbors are also
neighbors of each other. (Note that all the graphs | mentioned at the beginning
have none).

Strogatz and Watts define the clustering coefficient by first considering an
individual vertex. For vertex i, they define the clustering coefficient C_i to be the
number of edges between its nbrs divided by the total possible number of such
edges. Let U denote the neighbors of vertex i, let d be the size of U, and let E[U]
denote the set of edges between vertices in U. Then

Ci= |elall
lul
2

They then define the clustering coefficient C to be the average of these:
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Newman defines the clustering coefficient slightly differently. If we let U_i be the
neighbors of vertex i, then his cluster coefficient is

Cf, 2 LEEUM:&\
o o

2 |\ 2

That is, the number of neighbors of vertices that are connected, divided by the
maximum number possible.

Both of these numbers lie between 0 and 1. | don't know which is better. That is
a good problem for someone. First, you would have to figure out how to tell what
it means for a measure to be good, and that is quite a problem.

Assortativity

A graph is said to be assortative if vertices have some type, and edges typically
appear between nodes of the same type. It is disassortative if edges typically
appear between nodes of different types. For example, let's say we are doing a
study of relationships among Yale students. We could divide them into types
"science types" and "others".

Assortativity is a quantity that measures how assortative a network is. There are
a few definitions in the literature. But, | don't know what motivates them. So,
here's my proposed definition of assortativity:

let f be the fraction of edges that go between vertices of the same type.
letr=2f-1.

So, f lies between 1 and 0, and r, which we will call the assortativity, lies between
1 and -1, with 1 being very assorative, and -1 being disassortative.

Newman suggests a definition which | find less obvious than this one. Maybe he
has reasons, but he doesn't say why. Can anyone figure it out?
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| began by introducing assortativity this way just to motivate it. What we are
actually going to be interested in is assortativty by degree. While we might not
know the types of nodes in a network, we do at least know their degrees.

Here the way | will first define it. Consider a random edge in the graph, and treat
one vertex as the "first" vertex and the other as the "second". Let X be the
random variable that is the degree of the first vertex, and Y be the degree of the
second. X and Y clearly have the same distribution. We will be interesteed in
how correlated they are. Newman defines assortativity by degree to be the
Pearson Correlation Coefficient of these variables. The easiest definition is:

Covix o)
AL (1) - A (?)

That is, the covariance of X and Y, divided by the product of their standard
deviations.

— =

To make that more explicit, let mu be the average degree, which is the mean of X
and Y. Then, ris the expectation of (X-mu)*(Y-mu), divided by the variance of (X-
mu).

Even more explicitly, one can treat X and Y as vectors indexed by edges of the
graph (where we treat the edges as having a first and second vertex). For each
such oriented edge e, we can set X_e to be the degree of the first vertex in e, and
Y_eto be the degree of the second vertex in e. Then, r is the angle between the
vectors (X - mu*1) and (Y- mu*1). Algebraically, this is given by:

© = Q(—,Aﬂ)TOJ'/dL\
X pdl[l- 19~

Here's an example. I've labeled each edge, and give the vectors.
Note that each edge appears twice in the vectors.

X Y
\
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Here's how | then compute the assortativity in Matlab:

> a=1]J13; 31; 32; 23; 32;23;22;22]

a =

NNNWNWWR
NNWNWNEFE®

>> mu = mean(a(:,1));
>> r = (a(:,1-mu)" * (a(:,2) - mu) / norm(a(:,1)-mu)”2

r =

-0.7143

The reason that | get excited about assortativity is that it seems to distinguish
between different types of networks. Here is the table from Newman's paper.
Note that most social networks have positive assortativity, while the technological
networks display negative assortativity.

Group Network Type Sizen  Assorfativity r Emor o,
a2 Physics coauthorship undirected 52000 0.363 0.002
a Biology coauthorship mndirected 1 520 231 0.127 0.0004
b Mathematics coauthorship  ndirected 253 330 0.120 0.002
Social c Film actor collaborations  ndirected 449913 0.208 0.0002
d  Company directors undirected T673 0.276 0.004
e Student relationships undirected 373 —0.029 0.037
f Email address books directed 16 881 0.092 0.004
g Power gnd undirected 4041 —0.003 0.013
Technological b Intemet undirected 10697 —0.189 0.002
i World Wide Web directed 269 304 —0.067 0.0002
] Software dependencies directed 3162 —0.016 0.020
k Protemn interactions undirected 2113 —0.136 0.010
1 Metabohic network undirected 763 —0.240 0.007
Biclogical m  Neural network directed 307 —0.226 0.016
n  Marme food web directed 134 —0.263 0.037
o Freshwater food web directed a2 —0.326 0.031
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Of course, somone should try to reproduce this result, making sure that the
results are not due to sampling bias (more about that later in the semester).

Caveat/Research Problem

Whenever someone tries to summarize a network by just one parameter, they
are implicitly assuming that this parameter is somehow uniform throughout the
network. This might be the case, but I'm not sure. It would be interesting to test
this implicit hypothesis.

Directed Graphs

For directed graphs, there are a few other things to consider. First of all, you can't
necessarily get from any node to any other node by a directed path. We call a set
of nodes S strongly connected if for each pair of nodes in S there is a path from
one to the other.

We say that Sis a strongly connected component if it is strongly connected, and
there is no other vertex that can both reach S and is reachable from S.

In a directed graph, it is interesting to investigate the sizes of the strongly
connected components.

There are also additional structures attached to the strongly connected
components: there are vertices that can reach them, and are vertices reachable
from them. Let's look at an example.

The following figure is a sketch of the web graph generated by researchers at

Altavista in 1999. It appeared in the paper "Graph Structure in the Web", Broder
et. al., Computer Networks 33, (2000) pp.309-320.
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You will see that they found that the graph had a very large strongly connected
component (with around 1/4 of the vertices), and that around 1/2 of the vertices
could either reach this component, or could be reached from it.

They also investigated the average distance between randomly chosen pairs of

vertices. They found that about 1/4th of the pairs had a directed path from one
vertex to the other. The average lenghts of the paths are given in the following
table.

Edge type In-links (directed)  OQut-links (directed)

Undirected

Average connected distance  16.12 16.18

6.83

They also tried to make some measurements of the diameter of the graph. They
do this by first choosing a vertex, and then computing the distance of it to every
other vertex. (this is done by Breadth-First-Search, the algorithm in which you
first identify all neighbors of a vertex, then all their neighbors, etc.). The distance
of the furthest node from a given vertex v is the depth of the graph with respect
tov.

They did this both by considering links in the directions given, and by reversing
the directions of the links. Starting from vertices in the large strongly connected
component, they computed the depth of the graph from those vertices. The
minimum depth that they found was 475, and the maximum was 503. This is a lot
more than "6 degrees of separation". It also tells them that the diameter of the
strongly connected component is at least 503 - 475 = 28.
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Degree distributions

| ended class by talking a little bit about degree distributions. Many papers have
been published that demonstrate that the degrees of vertices in various networks
satisfy a power law. That is, that the proportion of vertices of degree d is

proportional to d o Dﬂ

For some non-negative constant alpha.

Much of this work is now viewed as suspect, with some conclusions being
attributed to bad statistics, and some being attributed to sampling error. In a
later lecture, | will talk about problems that come from sampling. In the
meantime, | suggest that you read some of Newman's big survey or the Broder et.
al. paper for a credulous analysis, Evelyn Fox Keller's essay for a critique, and
Robinson's article for a short description of the problems that come from
sampling. (all linked to under this lecture)
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