
Graphs and Networks Lecture 7

Spectral Partitioning

Lecturer: Daniel A. Spielman September 27, 2007

7.1 Appology

I want to begin this lecture by admiting that the last lecture was not well-organized. My plan is
to spend this lecture fixing the damage.

7.2 The Laplacian

Let me begin by recalling the definition of the Laplacian matrix of a graph G = (V,E). Formally,
it is given by

L(u, v) =


−1 if (u, v) ∈ E

d(u) if u = v

0 otherwise.

One can also define the Laplacian by
L = D −A.

The key property of the Laplacian that we exploit is that for x ∈ IRV

xTLx =
∑

(u,v)∈E

(x (u)− x (v))2 . (7.1)

Let me give you a simple proof of this. First, consider a graph with one edge. It’s Laplacian matrix
is (

1 −1
−1 1

)
.

So, for any vector x ∈ IR2,

(
x (1) x (2)

)( 1 −1
−1 1

)(
x (1)
x (2)

)
= x (1)2 − 2x (1)x (2) + x (2)2 = (x (1)− x (2))2 .

Now, to derive (7.1), for any two vertices u and v define Lu,v to be the Laplacian matrix of the
graph containing just the edge from u to v. It is easy to show that

L =
∑

(u,v)∈E

Lu,v,
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so that

xTLx = xT

 ∑
(u,v)∈E

Lu,v

x =
∑

(u,v)∈E

xTLu,vx =
∑

(u,v)∈E

(x (u)− x (v))2 .

Note that if x is the characteristic vector of a set S, that is

x (u) =

{
1 if u ∈ S

0 otherwise,

then
xTLx = |∂(S)| .

Let me state a few elementary facts about the Laplacian matrix. Their proofs are similar to proofs
we did for the walk matrix.

Proposition 7.2.1. Let L be the Laplacian of connected graph G = (V,E).

1. The smallest eigenvalue of L is 0.

2. L1 = 0.

3. The second-smallest eigenvalue of L is greater than 0.

7.3 The Courant-Fischer Theorem

Theorem 7.3.1 (Courant-Fischer). Let A be a symmetric matrix with eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn. Then, for all 1 ≤ k ≤ n,

λk = min
S of dimension k

max
x∈S

xT Ax

xT x
.

Note that the term
xT Ax

xT x

is usually called the Rayleigh quotient of x. For an eigenvector v, the Rayleigh quotient of v is its
eigenvalue.

We often exploit this theorem through the following corollary.

Corollary 7.3.2. Let A be a symmetric matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. and
corresponding eigenvectors v1, . . . , vn. Then, for all 1 ≤ k ≤ n,

λk = min
x⊥v1,...,vk−1

xT Ax

xT x
, and

vk = arg min
x⊥v1,...,vk−1

xT Ax

xT x
.
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I’ll now show you how the Courant-Fischer theorem is usually applied, and then I will sketch a
proof of it for you.

The typical use of the Courant-Fischer theorem is to prove upper bounds on small eigenvalues (or
lower bounds on large eigenvalues). For example, for the Laplacian we have v1 = 1. So, this tells
us that the second-smallest eigenvalue of the Laplacian satisfies

γ2 = min
x⊥1

xTLx

xTx
.

This means that for every vector x that is orthogonal to 1, we have

γ2 ≤
xTLx

xTx
.

So, to prove an upper bound on γ2, it suffices to evidence an x orthogonal to 1 of small Rayleigh
quotient.

Recall that last class we defined the sparsity of a cut S to be

sp(S) def=
|∂(S)|

min (|S| , |V − S|)
.

We will now use Corollary 7.3.2 to show that

γ2 ≤ 2 min
S⊂V

sp(S).

Let S be a set for of size at most |V | /2, and let χS be the characteristic vector of S. We then have

χT
SLχS = |∂(S)| ,

and
χT

SχS = |S| .

This is almost what we want, but we don’t have χT
S1 = 0. So, lets modify χS to make it orthogonal

to 1. Set
x = χS − c1,

where
c = |S| / |V | .

We now have xT1 = 0,
xTLx = χT

SLχS = |∂(S)| ,

and
xTx = |S| (1− |S| / |V |)2 + (|V − S|) (− |S| / |V |)2 = |S| (1− |S| / |V |) ≥ |S| /2.

So,

γ2 ≤
xTLx

xTx
≤ |∂(S)|

|S| /2
= 2sp(S).



Lecture 7: September 27, 2007 7-4

7.4 A proof of Courant-Fischer

I’ll just prove the Corollary, which is equivalent to the Theorem. Recall that we can choose
eigenvectors v1, . . . , vn so that

vT
i v j =

{
1 if i = j

0 otherwise.

Also recall that every vector x may be expressed as

x =
∑

i

v iαi, where αi = vT
i x .

So, we have
Ax =

∑
i

λiv iαi,

and

xTAx =

(∑
i

v iαi

)T (∑
i

λiv iαi

)
=
∑

i

λiα
2
i .

Similarly, we have
xTx =

∑
i

α2
i .

So,
xTAx

xTx
=
∑

i λiα
2
i .∑

i α
2
i .

≥
∑

i λ1α
2
i .∑

i α
2
i .

= λ1.

Moreover, if x = v1, then we achieve equality. This shows that

min
x

xTAx

xTx
= λ1.

To extend to the case in which x is orthogonal to v1, . . . , vk−1, note that this just implies that
α1 = · · · = αk−1 = 0, and so we get

xTAx

xTx
≥ λi,

and we get equality when x = v i.

7.5 The Normalized Laplacian

We are now going to look at a matrix called the normalized Laplacian which turns out to usually
be more useful than the ordinary Laplacian. It is defined by

L def= D−1/2LD−1/2.

This is a symmetric matrix. Note that it has the same eigenvalues as (because it is similar to)

LD−1 = (D −A)D−1 = I −AD−1 = I −M ,
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where M = AD−1 was the transition matrix of the random walk on G. So, the eigenvalues of L
are just one minus the eigenvalues of M , and there is also a translation between their eigenvectors.

Where the Laplacian is related to the sparsity and ratio of cuts, the normalized Laplacian is related
to the conductance, where I recall that we defined the conductance of a set to be

φ(S) def=
w(∂(S))

d(S)d(V − S)
.

To see why these should be related, consider the Rayleigh quotient with respect to L:

xTLx

xTx
=

xTD−1/2LD−1/2x

xTx
.

This is bit of a mess, and is much improved if we set y = D−1/2x , to get

yTLy

yTDy
=

∑
(u,v)∈E(y(u)− y(v))2∑

u d(u)(y(u))2
.

So, where the Rayleigh quotient of the Laplacian had the sum of the terms squared, the Rayleigh
quotient of the normalized Laplacian weights these by the degrees.

Let’s see how the Courant-Fischer Theorem applies in this later form. The eigenvector of eigenvalue
0 of L is d1/2. So,

v2 = arg min
x⊥d1/2

xTLx

xTx
.

Setting y1 = D−1/2v1 = D−1/2d1/2 = 1, and y2 = D−1/2v2, the condition that v2 be orthogonal
to v1 becomes

0 = vT
2 v1 =

(
yT

2 D1/2
)(

D1/2y1

)
=
(
yT

2 D1/2
)(

D1/21
)

= yT
2 D1 = yT

2 d .

So,

y2 = arg min
y⊥d

yTLy

yTDy
.

7.6 The Normalized Laplacian and Conductance

Let λ1 ≤ λ2 ≤ · · · ≤ λn denote the eigenvalues of the normalized Laplacian. As in the previous
section, one can show that

λ2 ≤ d(V ) min
S

φ(S) = d(V )Φ(S).

One of the greatest theorems in spectral graph theory is Cheeger’s inequality (as proved for graphs
by Jerrum and Sinclair), which says that

2
√

2
√

λ2 ≥ d(V )Φ(G).

So, whenever λ2 is small, we know that Φ(G) is small as well.
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Even more is true. If v2 is the eigenvector of eigenvalue λ2 of L, then one can use v2 to find a cut
in G of conductance at most

2
√

2
d(V )

√
λ2. (7.2)

The way we do it is to instead consider the vector y2 = D−1/2v2, sort the vertices according to
y2, and take some prefix. That is, the set has the form

S = {u : y2(u) ≤ t}

for some threshold t. Note that y2 is one of the vectors that we used when we drew spectral pictures
of graphs. So, this means that a cut of small conductance may be found by considering a vertical
cut in the spectral embedding.

By slightly extending a theorem of Mihail (who proved it for the ordinary Laplacian) we can show
that one only needs an approximation of the eigenvector. For any vector y that is orthogonal to d ,
we can can use y to find a cut whose conductance will be bounded by (7.2), but with λ2 replaced
by

yTLy

yTDy
.


