Graphs and Networks Lecture 15

The Price of Anarchy
Daniel A. Spielman October 21, 2010

15.1 Overview

These notes may be a little sketchy. But they are less sketchy that what I already have on-line
from previous years. We begin by reviewing the more technical content of the previous lecture.

15.2 Road Networks

We will consider traffic flow in an idealization of road networks. We view a road network as a
directed graph. In our model, the time that it takes to traverse a road will be a function of the
number of cars using that road. The more cars, the higher the traffic. In this lecture, we will
assume that the time it takes to traverse a road is a linear function of the form

af +b,
where f is the traffic on the road, and a,b > 0.

In fact, it suffices to just consider roads with cost functions like ax or b, as we can make a more
general road by just putting these two end-to-end.

We view a road network as a directed graph G = (V, E). For each edge e we define the cost function
of road e to be ¢e(f) = acf+be. Our road network will have two distinguished vertices, s and ¢, and
we assume that all traffic wants to go from node s to node . We assume that the total traffic is 1.
Traffic must be conserved (no crashes), so the amount of traffic entering each node must equal the
amount leaving. A traffic flow is any function f : E — IRZ° that obeys this conservation condition
and sends one unit from s to t. Any given car will take one particular path P from s to t. The
time taken by such a car will be the sum of the cost of all the edges on its path:

C(P) o Z Ce(fe)7

ecP

where f, is the flow on edge e.

15.3 Selfish (Nash) Routing

Assuming that everyone is greedy, everyone will try to take the path of least cost. Of course, this
might make that path slower. A natural question is what routing will result if everyone tries to
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optimize for themselves. Such a routing is called a Nash equilibrium. In this situation the Nash
equilibrium is unique. But, we don’t know that yet.

Let the set of s-t paths be Pi,..., P, and let «; be the fraction of the traffic that flows on path
P;. In the Nash equilibrium, no car will go along a sub-optimal path. Assuming that each car has
a negligible impact on the traffic flow, this means that every path P; that has non-zero flow must
have minimal cost. That is, for all ¢ such that o; > 0 and all j

o(F;) < o(F).

15.4 Social optimum

Society in general cares more about the average time its takes to get from s to ¢t. If we have a flow
that makes this average time low, everyone could rotate through all the routes and decrease the
total time that they spend in traffic. So, the social cost of the flow f is

clag, ..., a) et
ZaiC(Pi) = Zai Z ce(fe)
i 7 ecP;
= Zce(fe) Z Q;
e i:e€P;

= Z ce(fe)fe-

Theorem 15.4.1. All local minima of the social cost function are global minima. Moreover, the
set of global minima is convex.

Proof. This becomes easy once we re-write the cost function as
Zce(fe)fe = Zaefg + be fe
e e

and recall that we assumed that a. and b, are both at least zero. The cost function on each edge
is convex. It is strictly convex if a. > 0, but that does not matter for this theorem.

If you take two flows, say f° and f!, the line segments of flows between them contains the flows of
the form f! where

f;f:tfel_‘_(l_t) 37
for0<t<1.

By the convexity of each cost function, we know that the cost of any flow f! is at most the maximum
of the costs of f* and f!. So, if f! is the global optimum and f is any other flow with higher cost,
the flow f¢ will have a social cost lower than f°. This means that f° cannot be a local optimum.
Similarly, if both f and f! are global optima, then f! must be as well. O
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15.5 Paradoxes

In class, we saw Pigou’s example of a two-road network in which the cost of the social optimum is
3/4 of the cost of the Nash equilibrium. We also saw Braess’s Paradox, which is an example where
the addition of a road increases the cost of the Nash equilibrium.

15.6 Social optimum as Nash equilibrium

Theorem 15.6.1. Let G be a graph with edge costs given by co(f) = acf + be. Let G be the same
graph but with with edge costs given by

&(f) % 2a0f + be.

Then, a flow is a social optimum for G if and only if it is a Nash equlibrium for G.
Proof. Let f be a socially optimal flow for G. It can be represented as having flow «; over path P;

for some set of coefficients aq, ..., ar. Well, there might be many such representations. We only
need to know that there is at least one. We will prove that for all ¢ such that «; > 0 and for all j,

¢(py) < é(Py),
which establishes the claimed result.

To see this, we will prove that if we shift a little bit of the flow from path i to path j. If we
decrease o; by € and increase a; by e, for small €, then the change in the cost of the social optimum

approaches
. <8c(a1,...,ak) 30(a1,---,ak)> >0,
6%}

8aj 1ole%,
as aq,...,q is a social optimum.

So, for a; > 0, we know that for every j

oc(ay,...,ax) S oc(ai, ..., ar)
804]‘ B ooy

Now, let’s compute those derivatives.
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We have
86(051)'--70%) . afece(fe)
B D D
afece(fe>
— Z _ " 7

80@
ecP;

_ E 806 fe + Z feace fE)
Q)

ecP;

= Zaefe+be+ Z feae

EEPj GEPj

= Z 2aefe + be

CEPj
—&(P)).

Conversely, we see that if « is a nash equilibrium for G then it is a local social optimum. As local
social optima are also global social optimum, it must be one of those as well. O

While I claimed the following corollary in class, I neglected to prove it.

Corollary 15.6.2. Fvery Nash equilibrium has the same social cost.

Proof. Let G be the graph in which we are considering the Nash equilibria, and let G be the graph
that is related to G as in the previous theorem. By the previous theorem, we know that all Nash
equilbria of G are social optima of G, and so all of them have the same social cost under cost
function c¢. We just need to show that the same holds under the cost function ¢.

The proof works by refining the proof of Theorem 15.4.1. Let f% and f! be two different Nash
equilibria in G. Then, they are both social optima in G. Consider the flow that is their average,
Y2 = (1/2)(f° + f1). Recall that the social cost of f/2 is

ZC f1/2 f1/2 Za f1/2 + b f1/2

For all e, we have
befs? = (1/2) (befe +bef?) -
On the other hand, for every e for which a. > 0, we have
ae(fel/2)2 < (1/2) (ae(fe?)Q + ae(fel)2) )
with equality only if f! = f0.

As we have assumed that both f! and f¥ are social optima, we may conclude that L= £9 for all
e such that a. > 0. Thus, the difference of the social cost of these flows in G satisfies

22% )2+ befl — Z2aef0 )2+ b fO = bel beo

As this is also the difference of the social costs in G, it must be zero. [
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So, the cost of a Nash equilibrium is now well defined. Let Nash(G) denote the value of a Nash
equilibrium in G and let Opt(G) denote the value of the social optimum.

Theorem 15.6.3. Let G be a directed road network in which every edge e has a cost function of
the form ce(fe) = aefe + be, with ae,be > 0. Then,

Nash(G) < %Opt(G).

Proof. The key to the proof is the construction of another road network G that has the same
vertices as G, all the edges of G, and an addititonal set of edges. Let f be a Nash flow for G. Our
construction of G will depend upon f. For each edge e € G, G contains both e and another edge é
that has the same endpoints as e, but the cost function

def

ce(x) = ce(fe)-
That is, the cost of edge é is a constant function, and equals the cost of edge e under the Nash flow
f.

We now observe that f, when treated as a flow in @, is a Nash flow in G. The reason is that every
s-t path in G will consist of a combination of both original and hatted edges. For each of the hatted
edges €, there is an original edge e that has the same cost under f. So, there is no s-t path in G
that has a lower cost than the paths being used in the flow f.

We will now construct an optimal flow in CA;', which we will call g. This flow g will make equal use
of each of the original and the hatted edges. That is, for every e

1 1
ge:§fe and gézife'

To show that g is an optimal flow in @, we will construct a graph G that has the same edges as é,
but costs
Ce(r) = 2aex + b and  ¢s(x) = ce(fe).

By Theorem 15.6.1, g is an optimal flow in G if and only if it is a Nash flow in G. To show that ¢
is a Nash flow in G, observe that

ée(ge) = 2ae(fe/2) +be = Ce(fe)a and
Ce(ge) == ce(fe)-
So, g is a Nash flow in G precisely because f is a Nash flow in G.

Now that we know both a Nash flow and an optimal flow in é, we can show

o~ o~

ZNash(G) < Opt(@).
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This follows from

Nash(@ Z fece(fe) + Zfece fe)
= Zfece fe
:Zaef62+befev

and

Opt(G dece (ge) + dece (9e)
Sy S
- Zé(aé b+ Lo as 4 be)
=37 2ac? + i
> fz acf? + fobe

= zNash(CA}).

To finish the proof, observe that Nash(G) = Nash(é) and, as G has every edge that G does,

Opt(G) < Opt(G).

15.7 Bounding Braess’s Paradox

In the previous lecture, I showed how to use Theorem 15.6.3 to bound the effect of Braess’s paradox.
I’ll now do that formally.

Theorem 15.7.1. Let G be a road network and let G be a road network obtained by adding roads
to G. Then

Nash(G) < %Nash(G).

Proof.
Nash(G) > Opt(G) > Opt(G) > %Nash(é).



