
Graphs and Networks Lecture 19

Graph Clustering : Spectral Methods and Normalized Cuts

Daniel A. Spielman November 9, 2010

19.1 Overview

In this and the next lecture, we are going to consider approaches to clustering the vertices of a
graph. I think that we understand reasonably well how to partition the vertices of a graph into
two sets. However, in clustering, we want to divide the vertices of a graph into many sets. This
problem is not nearly as well understood.

There is quite a bit of disagreement over what one should be optimizing. Even once one has a
measure of the quality of a clustering, it is usually computationally difficult to find a clustering
that optimizes this measure. So, one typically uses a heuristic. The best heuristics typically
combine two operations: a global optimization followed by local improvements. This lecture will
probably just focus on the global optimizations, unless I have time time to implement some local
improvement algorithms.

The algorithms that work best depend quite a bit on the area of application. The Scientific Comput-
ing community has developed a number of algorithms for partitioning well-shaped meshes (Chaco,
Metis and Scotch). Different, but related, algorithms have proved popular in Image Segmentation
(Shi and Malik, Yu and Shi). A very different type of algorithm is popular with Phyisicists who
now study social networks. We will see this type of algorithm next lecture.

For now, let me recommend the survey of von Luxburg [Lux07].

19.2 K-Means

Before we get too into how one should cluster the vertices of a graph, lets take a moment to consider
the seemingly easier problem of clustering vectors in IRd. Lets call the vectors x1, . . . , xn. One of
the most popular measures of the quality of a partition of these vectors into clusters C1, . . . , Ck is
the k-means objective function. It is

k
∑

a=1

1

|Ca|

∑

i,j∈Ca

‖xi − xj‖
2 . (19.1)

This expression is simplified by setting µa to be the average of the points in cluster Ca:

µa =
1

|Ca|

∑

i∈Ca

xi.

19-1



Lecture 19: November 9, 2010 19-2

We then have that (19.1) equals
k
∑

a=1

∑

i∈Ca

‖xi − µa‖
2 . (19.2)

That is, we sum the square of the distance of each point to the center of its cluster.

While it is NP-hard to find the clusters that minimize this objective function (even for k = 2),
there is a very popular heuristic called the k-means algorithm (introduced by Lloyd [Llo82]) for ap-
proximately minimizing the objective function. Before I tell you the algorithm, I’d like to complain
that many people don’t make the distincition between the objective function and the algorithm,
which is just careless.

Lloyd’s consists of alternating steps in which one computes the cluster-averages, µ1, . . . , µk, and
then shifts each point to the cluster with the closest center. That is, we alternate the steps

1. For each 1 ≤ a ≤ k, set µa = (1/ |Ca|)
∑

i∈Ca

xi.

2. For each 1 ≤ i ≤ n, put i in the cluster a for which ‖µa − xi‖ is lowest.

One can show that each of these steps will decrease the objective function. I didn’t say how to
start. Typically, one will choose k random data points and make them the cluster centers. A
better initialization is given by choosing the k points with probability inversely proportional the
the square of their distance from the previous points (k-means++ [AV07]).

One typically runs this algorithm until it stops making any changes. Then, one usually runs it again
and again with different random starts. It is not very consistent. But, it is easy to implement, so
people like to use it.

19.3 Clustering in Graphs

One could try to directly lift the k-means algorithm to a graph. If A is the adjacency matrix of
the graph, we could take xi to be the ith row of A. This sometimes works. But, there are graphs
on which it does remarkably poorly. To get some idea as to why, consider two vertices that do not
have any neighbors in common. The rows corresponding to these vertices will be orthogonal, and
so their distance will be trivial. This problem can be particularly severe in a bipartite graph. OK,
maybe its surprising that this ever works. The other problem is that the dimension of the space is
very large (equal to the number of vertices), which makes the algorithm slow.

So, we would like to get some coordinates in a low-dimensional space for the vertices of the graph
We know from Cheeger’s inequality that the eigenvector of the second-largest eigenvalue of the walk
matrix is good for partitioning into two parts. So, it seems natural to use a few more eigenvectors if
we want to partition into more parts. This idea, but with the Laplacian matrix instead of the walk
matrix, was proposed by Chan, Schlag and Zien [CSZ94]. The right normalization for the walk
matrix comes from the work of Shi and Malik [SM00]. They suggest taking the left-eigenvectors,
whereas we previously considered the right-eigenvectors (well, we did show that the all-1 vector is
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a left-eigenvector). So, let λ2, . . . , λk be the k − 1 largest non-trivial eigenvalues of W = AD
−1

(other than λ1 = 1), and let v 2, . . . , vk be the corresponding left-eigenvectors. Now, set

xi = (v2(i), v 3(i), . . . , vk(i)) .

We will try clustering the vertices of the graph by using k-means on these n vectors x1, . . . , xn.
There are principled reasons for doing this. But, rather than showing them to you, I will try to
just give you some intuition as to why this might give good clusterings.

19.4 Drawing Graphs using Eigenvectors

It turns out that if you want to draw a graph, a good easy way to do it is to take the two vectors
v2 and v3, and locate vertex i as position

xi = (v 2(i), v 3(i)) .

To convince you of this, let me show you the pictures this gives of some simple graphs. To draw
the pictures, I will represent the edges as straight lines connecting the vertices.

To create my initial graph, I will choose 100 random points in the plane. I will then create a graph
on them by taking their Delaunay triangulation.

>> [a,xy] = delGraph(100);

>> plot(xy(:,1),xy(:,2),’o’)
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>> hold on

>> gplot(a,xy)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Now, I’ll draw a picture of the graph using the first two non-trivial eigenvectors to obtain coordi-
nates.

>> lap = diag(sum(a)) - a;

>> di = diag(1./sum(a));

>> [V,D] = eig(di*lap);

>> [val,ord] = sort(diag(D));

>> W = V(:,ord(2:3));

>> figure(2)

>> gplot(a,W)
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I’d say that this gives a pretty good picture. Moreover, it is clear that if we run k-means on these
coordinates, we will get a reasonable clustering of the vertices. Let’s try it out. We’ll create three
clusters. I’ll first plot them over the spectral picture, and then in original space.

>> ide = kmeans(W,3);
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>> figure(2)

>> hold on

>> plot(W(ide==1,1),W(ide==1,2),’o’)

>> plot(W(ide==2,1),W(ide==2,2),’rs’,’MarkerSize’,10)

>> plot(W(ide==3,1),W(ide==3,2),’g*’,’MarkerSize’,10)
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And, here it is in the original space.

>> figure(1)

>> plot(xy(ide==1,1),xy(ide==1,2),’o’)

>> hold on

>> plot(xy(ide==2,1),xy(ide==2,2),’rx’)

>> plot(xy(ide==3,1),xy(ide==3,2),’g*’)
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Of course, we could use a more direct method to cluster points in the plane. I am not advocating
using this method for that problem (although there are reasons to do something like this). Rather,
I’m just trying to do an example in which it is visually clear that we are getting a reasonable
answer.
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Of course, I should compare this with using k-means on the adjacency matrix directly. Here is the
result, plotted in the xy space.

>> idx = kmeans(a,3);

>> figure(1)

>> clf

>> plot(xy(idx==1,1),xy(idx==1,2),’o’)

>> hold on

>> plot(xy(idx==2,1),xy(idx==2,2),’rs’)

>> plot(xy(idx==3,1),xy(idx==3,2),’g*’)
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It’s not so bad, but I don’t think it is as good as the spectral clustering.

Now, let’s see an example where using k-means directly does very poorly: on the grid graph. First,
here’s an image of this graph.

>> [a,jnk,xy] = grid2(10,10);

>> figure(1)

>> clf

>> plot(xy(:,1),xy(:,2),’o’)

>> hold on

>> gplot(a,xy)

>> axis off
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Let’s cluster it with k-means.

>> idx = kmeans(a,2);

>> clf

>> gplot(a,xy)

>> hold on; axis off

>> plot(xy(idx==1,1),xy(idx==1,2),’o’,’MarkerSize’,10)

>> plot(xy(idx==2,1),xy(idx==2,2),’rs’,’MarkerSize’,10)

I told you that k-means can do bad things on bipartite graphs.

Spectral partitioning, using k-means on the eigenvectors, gives almost perfect results for this graph.
For overkill, I’ll partition it into 4 pieces.
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>> lap = diag(sum(a)) - a;

>> di = diag(1./sum(a));

>> [V,D] = eig(di*lap);

>> [val,ord] = sort(diag(D));

>> W = V(:,ord(2:4));

>> ide = kmeans(W,4);

>> clf

>> gplot(a,xy); hold on; axis off

>> plot(xy(ide==1,1),xy(ide==1,2),’o’,’MarkerSize’,10)

>> plot(xy(ide==2,1),xy(ide==2,2),’rs’,’MarkerSize’,10)

>> plot(xy(ide==3,1),xy(ide==3,2),’g*’,’MarkerSize’,10)

>> plot(xy(ide==4,1),xy(ide==4,2),’kp’,’MarkerSize’,10)

19.5 Intrinsic Measures of Quality

We still need a way to measure the quality of a clustering. One way to start is to use a purely
graph-theoretic measure.

Shi and Malik [SM00] advocate for the normalized cut measure:

∑

a

|∂(Ca)|

d(Ca)
,

where we recall that d(Ca) is the sum of the degrees of the vertices in Ca. In the case of two
clusters, this has the advantage of exactly coinciding with a measure of conductance:

|∂(C0)|

d(C0)
+

|∂(C1)|

d(C1)
=

|∂(C0)|

d(C0)
+

|∂(C0)|

d(C1)

= (d(C0) + d(C1))
|∂(C0)|

d(C0)d(C1)

= (d(V ))
|∂(C0)|

d(C0)d(V − C0)
.

When I defined conductance I usually put the minimum in the denominator. But, it is common
to take the product instead. I note that Shi and Malik [SM00] introduced their spectral clustering
algorithm as a relaxation of the problem of minimizing the normalized cut objective function.

This is a variation of the k-way ratio cut measure introduced by Chan, Schlag and Zien [CSZ94]:

r(C1, . . . , Ck)
def
=
∑

a

|∂(Ca)|

|Ca|
.
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Chan, Schlag and Zien [CSZ94] also derive their spectral clustering algorithm as a relaxation of
this optimization problem.

In fact, Dhillon, Guan and Kulis [DGK04] have proved that there is a set of vectors that are
naturally associated with a graph so that one minimizes the above quantity by optimizing the
k-means objective function on those vertices. We get the vectors from the signed edge-vertex
adjacency matrix (from Lecture 12):1

U ((a, b), c) =











1 if a = c

−1 if b = c

0 otherwise.

This came up because the laplacian of an unweighted graph is given by

L = U
T
U .

We take the vector corresponding to vertex i to be the ith column of U .

The following result is proved by Dhillon, Guan and Kulis [DGK04].

Theorem 19.5.1. For each vertex i, let xi be the ith column of U . The clustering C1, . . . , Ck on
these vectors that minimizes the k-means objective function is also the clustering that minimizes

r(C1, . . . , Ck).

Proof. We first note that

xTi xj =











−1 if (i, j) ∈ E

di if i = j

0 otherwise.

So, for i 6= j,
‖xi − xj‖

2 = di + dj − 21(i,j)∈E.

In the following, I let E(Ca) denote the set of edges between vertices in Ca, and recall that

d(Ca) = 2 |E(Ca)|+ |∂(Ca)| .

For a cluster Ca,
∑

(i,j)∈Ca

‖xi − xj‖
2 = (|Ca| − 1)

∑

i

di + 2 |E(Ca)|

= |Ca|
∑

i∈Ca

di − |∂(Ca)| .

So, the k-means objective function of a clustering C1, . . . , Ck is

∑

a

1

|Ca|

∑

(i,j)∈Ca

‖xi − xj‖
2 =

∑

a

(

∑

i∈Ca

di +
|∂(Ca)|

d(Ca)

)

= 2m+ r(C1, . . . , Ck).

1In class, I thought that this was the unsigned version, but I was wrong.
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The only problem with this result is that it is fragile. When one exatly optimizes the k-means
objective function, one minimizes the k-way ratio cut score. But, if one merely approximately
optimizes the k-means objective function then one can be very far from the optimum of the k-way
ratio cut objective function.

19.6 Extrinsic Measures of Quality

Of course, the measure of quality one uses should really be motivated by an application. The
previous measures were loosely motivated by applications in scientific computing.

Let’s try an example where we can get a different measure of quality. For my graph, I will use some
data from the Netflix prize problem. I will take the 500 most popular movies, and a set of 25,000
people. I will put an edge between two movies if they were both watched by the same person.
Since this graph is really dense, I will do this with weights. So, the weight of the edge between two
movies will be the number of people who watched both movies.

To get an extrinsic measure of quality, I have downloaded data from the Internet Movie Database
about the genres of each movie. Each movie can have multiple genres. But, each genre can be
viewed as a 0/1 vector: 1 for the movies that fit that genre and 0 for those that don’t. In fact, I
can view each movie as a 0/1 vector in genre space. I will measure the quality of a clustering on
the movies by the score of the k-means objective function in genre space.

Let’s try it, first by running k-means clustering directly on the adjacency matrix.

>> load netGraph

>> idx = kmeans(movAdj,20);

>> kmObj(genmat, idx)

ans =

941.3839

We will get somewhat different results each time we try this. Here are the results of 10 runs.

>> for i = 1:10,

idx = kmeans(movAdj,20);

o(i) = kmObj(genmat, idx);

end

>> o

o =
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Columns 1 through 8

948.9249 945.2935 942.1254 942.9548 941.9828 951.3510 940.4278 947.9509

Columns 9 through 10

937.8062 947.6053

If we believe that low normalized cuts should be better, then a natural idea would be to try to take
this clustering and decrease the value of its normalized cut. I implemented some code for doing
this. It goes through the vertices one-by-one, and moves each vertex to a different cluster if doing
so would decrease the normalized cut objective function. We will do this now, and then check what
it does for the division of the genres.

>> id2 = refineNcut(movAdj, idx);

ncutScore =

18.2411

ncutScore =

17.9504

>> kmObj(genmat,id2)

ans =

868.1222

That’s a big improvement, and constitutes evidence that the normalized cut objective function
makes sense

Now, let’s try it with the spectral method. Again, I’ll do 10 runs.

>> lap = diag(sum(movAdj)) - movAdj;

>> di = diag(1./sum(movAdj));

>> [V,D] = eig(di*lap);

>> [val,ord] = sort(diag(D));

>> W = V(:,ord(2:20));

>> for i = 1:10,

idx = kmeans(W,20);

os(i) = kmObj(genmat, idx);
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end

>> os

os =

Columns 1 through 8

841.3696 844.2227 865.8461 839.6322 868.7224 839.2108 853.4619 862.7531

Columns 9 through 10

850.1907 838.8691

Not only is this faster, but the scores we get are significantly better.

I’ll now take the last cluster, and try out my local improvement algorithm. We will see that when
we decrease the normalized cut objective function we improve the partitioning of the generes.

>> kmObj(genmat,idx)

ans =

838.8691

>> id2 = refineNcut(movAdj, idx);

ncutScore =

17.9266

ncutScore =

17.8919

>> id2 = refineNcut(movAdj, id2);

>> id2 = refineNcut(movAdj, id2);

>> id2 = refineNcut(movAdj, id2);

>> id2 = refineNcut(movAdj, id2);

>> id2 = refineNcut(movAdj, id2);

ncutScore =

17.8290
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ncutScore =

17.8282

>> kmObj(genmat,id2)

ans =

829.5922

We again see improvement!

Let me point out that it is not clear that we should be using k − 1 eigenvectors when we want k
clusters. In the following experiment, I used just 9 eigenvectors. The performance on the genres is
better.

>> lap = diag(sum(movAdj)) - movAdj;

>> di = diag(1./sum(movAdj));

>> [V,D] = eig(di*lap);

>> [val,ord] = sort(diag(D));

>> W = V(:,ord(2:10));

>> for i = 1:10,

idx = kmeans(W,20);

os(i) = kmObj(genmat, idx);

end

>> os

os =

Columns 1 through 9

812.8180 827.1396 822.9371 825.3779 821.6810 829.1225 828.9523 836.0724 817.6240

Column 10

823.6171

It is worth looking at the clusters we actually get.

>> dispTitles(movTitles,idx);

--- Cluster 1 --- --- Cluster 11 ---

Pretty Woman Star Wars: Episode V: The Empi

Sweet Home Alabama Star Wars: Episode VI: Return
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What Women Want Star Wars: Episode IV: A New H

How to Lose a Guy in 10 Days Lord of the Rings: The Two Tow

Sister Act The Lord of the Rings: The Fel

Two Weeks Notice Lord of the Rings: The Return

Dirty Dancing

The Wedding Planner --- Cluster 12 ---

Mr. Deeds American Beauty

Maid in Manhattan Pulp Fiction

Patch Adams The Royal Tenenbaums

Bringing Down the House Memento

Runaway Bride Fight Club

Stepmom The Usual Suspects

Coyote Ugly Being John Malkovich

Cocktail Adaptation

Seven

--- Cluster 2 --- Traffic

I, Robot Reservoir Dogs

Shrek 2 Office Space

Troy Crouching Tiger, Hidden Dragon

The Bourne Supremacy Raising Arizona

The Terminal Amelie

Spider-Man 2 Monty Python and the Holy Grai

Man on Fire The Big Lebowski

Collateral O Brother, Where Art Thou?

Dodgeball: A True Underdog Sto Edward Scissorhands

Kill Bill: Vol. 2 Best in Show

Napoleon Dynamite 12 Monkeys

Eternal Sunshine of the Spotle Boogie Nights

The Manchurian Candidate American History X

Anchorman: The Legend of Ron B Snatch

The Stepford Wives Punch-Drunk Love

Mean Girls Dogma

Fahrenheit 9/11 High Fidelity

Hidalgo Rushmore

Starsky & Hutch L.A. Confidential

Van Helsing Election

Paycheck Almost Famous

Super Size Me Blow

The Village A Fish Called Wanda

Shark Tale What’s Eating Gilbert Grape

The Passion of the Christ Magnolia

Elf Clerks

Taking Lives Sling Blade

Raising Helen Secretary

The Forgotten This Is Spinal Tap
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Cellular Donnie Darko

Sky Captain and the World of T Run Lola Run

Walking Tall

Bad Santa --- Cluster 13 ---

Without a Paddle Big

The Punisher Jerry Maguire

Jersey Girl Dead Poets Society

Hero Philadelphia

The Girl Next Door A League of Their Own

Hellboy As Good as It Gets

The Chronicles of Riddick Good Morning, Vietnam

Saved! When Harry Met Sally

Fried Green Tomatoes

--- Cluster 3 --- Rocky

Finding Nemo (Widescreen) The Sound of Music

Monsters, Inc. Driving Miss Daisy

Shrek (Full-screen) Tootsie

Harry Potter and the Chamber o City Slickers

Harry Potter and the Sorcerer’ Finding Forrester

Harry Potter and the Prisoner Notting Hill

Ice Age Field of Dreams

The Wizard of Oz: Collector’s While You Were Sleeping

The Goonies Basic Instinct

A Bug’s Life The American President

Willy Wonka & the Chocolate Fa An Officer and a Gentleman

The Lion King: Special Edition Mr. Holland’s Opus

Mary Poppins Scent of a Woman

Aladdin: Platinum Edition Gone with the Wind: Collector’

Toy Story Flatliners

Terms of Endearment

--- Cluster 4 --- On Golden Pond

My Big Fat Greek Wedding

Catch Me If You Can --- Cluster 14 ---

Chicago The Green Mile

A Beautiful Mind Indiana Jones and the Last Cru

Bend It Like Beckham The Fugitive

Monster’s Ball A Few Good Men

About Schmidt Lethal Weapon

Bowling for Columbine Clear and Present Danger

Chocolat Patriot Games

Bridget Jones’s Diary Lethal Weapon 2

Whale Rider Lethal Weapon 3

About a Boy Kiss the Girls

I Am Sam The Devil’s Advocate

The Hours Ransom
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Serendipity Crimson Tide

Shakespeare in Love Legends of the Fall

Moulin Rouge The Negotiator

The Pianist The Pelican Brief

Life Is Beautiful A Time to Kill

The Good Girl U.S. Marshals

Frida In the Line of Fire

The Cider House Rules Rules of Engagement

In the Bedroom

Dead Man Walking --- Cluster 15 ---

The Full Monty Ferris Bueller’s Day Off

Zoolander Meet the Parents

American Pie

--- Cluster 5 --- Ghostbusters

Minority Report The Breakfast Club

Road to Perdition There’s Something About Mary:

Phone Booth Happy Gilmore

Gangs of New York The Princess Bride

Signs Austin Powers: The Spy Who Sha

Identity Liar Liar

The Count of Monte Cristo Austin Powers: International M

Old School The Wedding Singer

Black Hawk Down National Lampoon’s Vacation

One Hour Photo Caddyshack

Die Another Day Tommy Boy

Training Day Spaceballs

The Ring Ace Ventura: Pet Detective

Red Dragon Beetlejuice

We Were Soldiers National Lampoon’s Animal Hous

Frequency Sixteen Candles

Panic Room Groundhog Day

Austin Powers in Goldmember Airplane!

Daredevil Blazing Saddles

The Others Billy Madison

Insomnia Fast Times at Ridgemont High

Windtalkers Trading Places

Basic Stripes

Vanilla Sky Wayne’s World

Shallow Hal My Cousin Vinny

Unfaithful Risky Business

A.I. Artificial Intelligence Deuce Bigalow: Male Gigolo

Divine Secrets of the Ya-Ya Si

The Rookie --- Cluster 16 ---

28 Days Later The Godfather

Analyze That GoodFellas: Special Edition
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Ghost Ship One Flew Over the Cuckoo’s Nes

Unbreakable Apocalypse Now

Hannibal The Shining

Just Married Taxi Driver

Tears of the Sun The Graduate

A Clockwork Orange

--- Cluster 6 --- The Godfather, Part II

Titanic Full Metal Jacket

Erin Brockovich To Kill a Mockingbird

Sleepless in Seattle Platoon

Steel Magnolias Blade Runner

Pay It Forward Scarface: 20th Anniversary Edi

The Firm Citizen Kane

The Family Man Psycho

Hook Amadeus

City of Angels Dr. Strangelove

Phenomenon Rear Window

Beaches 2001: A Space Odyssey

Forever Young The Exorcist

The Bodyguard Chinatown

Unforgiven

--- Cluster 7 --- Annie Hall

Lord of the Rings: The Fellows

The Matrix --- Cluster 17 ---

Spider-Man You’ve Got Mail

The Matrix: Reloaded Legally Blonde

X-Men Father of the Bride

X2: X-Men United Big Daddy

The Terminator Grease

Star Wars: Episode II: Attack The Waterboy

Terminator 3: Rise of the Mach Coming to America

Batman American Pie 2

Blade Three Men and a Baby

Terminator 2: Extreme Edition My Best Friend’s Wedding

Star Wars: Episode I: The Phan Kindergarten Cop

Total Recall Beverly Hills Cop II

The Fifth Element Beverly Hills Cop

Interview with the Vampire The Princess Diaries (Widescre

The Matrix: Revolutions Turner and Hooch

Final Destination Never Been Kissed

Blade 2 The First Wives Club

Underworld Overboard

Dr. Dolittle

--- Cluster 8 ---

Pirates of the Caribbean: The --- Cluster 18 ---
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Bruce Almighty Top Gun

Ocean’s Eleven The League of Extraordinary Ge

The Bourne Identity The Sum of All Fears

The Italian Job Face/Off

Lost in Translation The Mummy Returns

Lord of the Rings: The Two Tow Rush Hour 2

50 First Dates Broken Arrow

Mystic River Bad Boys II

Kill Bill: Vol. 1 Die Hard With a Vengeance

The Last Samurai Lara Croft: Tomb Raider: The C

Lord of the Rings: The Return Murder By Numbers

Big Fish Behind Enemy Lines

Something’s Gotta Give Rush Hour

Anger Management XXX: Special Edition

The School of Rock Die Hard 2: Die Harder

Cold Mountain Bad Boys

Seabiscuit Big Momma’s House

The Butterfly Effect: Director Wild Wild West

Master and Commander: The Far Hollow Man

13 Going on 30

Runaway Jury --- Cluster 19 ---

Radio National Treasure

Cheaper by the Dozen The Incredibles

Along Came Polly Sideways

Love Actually The Notebook

Mona Lisa Smile Ocean’s Twelve

Secondhand Lions Hitch

Matchstick Men Ray

Monster The Aviator

Under the Tuscan Sun Finding Neverland

Secret Window Meet the Fockers

Gothika Million Dollar Baby

Freaky Friday Spanglish

Daddy Day Care Garden State

House of Sand and Fog Hotel Rwanda

Out of Time Ladder 49

Miracle Lemony Snicket’s A Series of U

21 Grams Closer

American Wedding Crash

Legally Blonde 2: Red, White & Constantine

The Whole Nine Yards Coach Carter

Once Upon a Time in Mexico Miss Congeniality 2: Armed and

The Missing Sahara

The Life Aquatic with Steve Zi

--- Cluster 9 --- In Good Company
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Forrest Gump Sin City

The Sixth Sense Batman Begins

Gladiator The Longest Yard

The Shawshank Redemption: Spec Shall We Dance?

Braveheart Be Cool

Saving Private Ryan

The Silence of the Lambs --- Cluster 20 ---

Rain Man Men in Black

Good Will Hunting Jurassic Park

Raiders of the Lost Ark Mission: Impossible

Die Hard Speed

Indiana Jones and the Temple o The Mummy

Schindler’s List Jaws

Apollo 13 True Lies

Remember the Titans Mission: Impossible II

Cast Away What Lies Beneath

The Hunt for Red October The Perfect Storm

Stand by Me Mrs. Doubtfire

Back to the Future The Nutty Professor

Dances With Wolves: Special Ed U-571

E.T. the Extra-Terrestrial: Th The Lost World: Jurassic Park

Tombstone Gremlins

A Knight’s Tale

--- Cluster 10 --- Nine to Five

Miss Congeniality Planet of the Apes

Independence Day Close Encounters of the Third

The Patriot Charlie’s Angels

The Day After Tomorrow

Con Air

Twister

Pearl Harbor

Armageddon

The Rock

Lethal Weapon 4

Gone in 60 Seconds

Men of Honor

Double Jeopardy

John Q

Swordfish

Men in Black II

Ghost

Air Force One

Tomb Raider

Entrapment

S.W.A.T.
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Enemy of the State

The General’s Daughter

The Fast and the Furious

The Recruit

Along Came a Spider

The Bone Collector

Don’t Say a Word

High Crimes

The Net

Collateral Damage
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