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Erdös-Rényi Random Graphs: The Giant Component

Daniel A. Spielman September 14, 2010

4.1 Introduction

Recall that all the “Real-World” graphs we examined in Lecture 2 had one component containing a
large constant fraction of the vertices. The second-largest component was smaller by many orders
of magnitude. This property is shared by Erdös-Rényi random graphs and by many other graph
models. In this lecture, we will see (mostly) why Erdös-Rényi random graphs have this property.
The large component is called the “Giant Component”.

Consider drawing a random graph from the distribution G(n, p) with p = c/(n− 1) for a constant
c that stays fixed as n grows. The expected degree of each vertex in such a graph is c as n. For
c < 1, we will see that every component of such a graph is probably small, having at most O(log n)
vertices. On the other hand, for c > 1 we will see that such a graph probably has a connected
component containing a constant fraction of the vertices. Moreover, it is unlikely that any other
component has more than O(log n) vertices.

This is an example of a threshold phenomenon. Generally speaking, a graph property is a threshold
phenomenon if the probability that it happens jumps from 0 to 1 as the parameter c passes a
threshold. There are many other graph properties that exhibit similar jumps. I will list some at
the end of the lecture if there is time.

We will begin our study of the giant component by examining the simplest such phenomenon: the
giant component in the Galton-Watson branching process. This does not involve a graph. Just an
organism reproducing.

4.2 Concentration and Chernoff Bounds

We begin our discussion by introducing one of the workhorses of probabilistic combinatorics: the
Chernoff bounds. These are the main reason you see terms like O(log n) popping up everywhere in
probability. Basically, the Chernoff (and Hoeffding) bounds are quantitative versions of the central
limit theorem. They say that sums of independent random variables are exponentially concentrated
about their means. The forms of the statement depend upon the types of random variables in-
volve. When studying Erdös-Rényi-random graphs, we will just be interested in Bernoulli random
variables. The Chernoff bounds we will use1 follow.

1Many forms of Chernoff bounds may be found. It is often convenient to prove one’s own. The form we use here
appears in [MU05]. Other useful forms and derivations may be found in [AS00, MR95, DP09].

4-1



Lecture 4: September 14, 2010 4-2

Theorem 4.2.1. Let X1, . . . , Xn be independent Bernoulli (that is, 0/1 valued) random variables
where Pr [Xi = 1] = pi. Let X =

∑
Xi and let µ =

∑
pi be the expectation of X. Then, for all

0 < δ < 1
Pr [X ≤ (1− δ)µ] ≤ exp(−µδ2/2)

and
Pr [X ≥ (1 + δ)µ] ≤ exp(−µδ2/3).

For an example of how the Chernoff bounds are used, let’s examine the degrees of vertices in graphs
drawn from the distribution G(n, p). For now, consider p = c lnn/(n − 1) for some c > 6. The
expected degree of a vertex is µ = c lnn. We will now see that it is unlikely that the degree of a
vertex is much more or much less than this. If we set δ =

√
6/c < 1, we find that the probability

that the degree of a vertex exceeds (1 + δ)µ is at most

exp(−c(lnn)δ2/3) = exp(−c(lnn)(6/c)/3) = exp(−2 lnn) = n−2.

So, the probability that there is any vertex in the graph with degree greater than (c+
√

6c) lnn is
at most n−1. Applying the first form of the Chernoff bound, we can also show that the probability
that there is any vertex in the graph with degree less than (c−

√
4c) lnn is at most n−1.

4.3 The Galton-Watson Process, binary case

Imagine a single-cell organism that reproduces by division. Also imagine that there is some fixed
probability p that the organism will survive to reproduce. Under these assumptions, we will compute
the probability that the descendants of this organism die out or survive forever.

To be more concrete, let’s start with one organism and let’s assume this it does survive to reproduce.
If it does reproduce, it divides into two organisms, each of which has a probability p of surviving
to divide themselves. So, the expected number of organisms in the first generation that survive to
reproduce is 2p. Similarly, the expected number of organisms in the second generation that survive
to reproduce is 4p2. One way of seeing this is to identify 4 potential organisms in the second
generation: the first and second child of each of the first and second children of the original. Each
of these 4 potential organisms exists and survives only if their parent organism survives and they
survive themselves. The probability of each of these events is p2. We may similarly compute that
the expected number of organisms in the kth generation is

2kpk = (2p)k.

For p < 1/2 this number goes to zero, whereas for p > 1/2 it goes to infinity. This is clearly some
type of threshold phenomenon.

We can use this expectation calculation to prove it is unlikely that the descendants of the organism
will survive for a long time when p < 1/2. Let Xk be the random variable counting the number
of descendants of the organism in the kth generation. The descendants are still around in the kth
generation if and only if Xk ≥ 1. However, Markov’s inequality tells us that

Pr
[
Xk ≥ 1

]
≤ E

[
Xk
]
≤ (2p)k −−−→

k→∞
0
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But, what about when p > 1/2? The expected number of descendants goes to infinity. But, what
does that tell us about the chance that the number of descendants is in fact infinite? This is less
obvious.

4.4 p > 1/2

Let θk(p) be the probability that an organism has at least k generations of descendants. This is
the same as the probability that at least one of its descendants survives and has at least k − 1
generations of descendants. Let A be the event that the descendants of the first child live to at
least k − 1 generations and B be the same event for the second child. The probability that the
first child survives and has at least k − 1 generations of descendants is pθk−1(p). As θk(p) is the
probability of A or B, we may compute it using the formula

Pr [A or B] = Pr [A] + Pr [B]− Pr [A and B] .

As A and B are independent in our mathematical abstraction, we have

Pr [A and B] = Pr [A] Pr [B] .

This gives
θk(p) = 2pθk−1(p)− (pθk−1(p))2. (4.1)

In particular,
θ0(p) = 1 and θ1(p) = 2p− p2.

As k grows large, we expect θk(p) to approach a limit. If it does, it should be a number q that
satisfies the equation

q = 2pq − (pq)2.

This equation has one obvious solution: q = 0. For p > 1/2 we will see that the other solution
dominates. To find the other solution, divide by q to get

1 = 2p− p2q

p2q = 2p− 1

q
def=

2p− 1
p2

.

Note that for p > 1/2 this is a constant strictly larger than 0. We will now show by induction that

θk(p) ≥ q

for all k ≥ 0. To see this, we examine the function

f(x) = 2px− (px)2,

as
θk(p) = f(θk−1(p)).
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We will base our induction in the case k = 0, for which we have

1 = θ0(p) ≥ q

(with equality only when p = 1). To perform the induction, we will show that f(x) ≥ q for x ∈ [q, 1].
We first compute the derivative of f with respect to x and find

f ′(x) = 2p− 2p2x = 2p(1− px) > 0

for x ∈ (0, 1]. This means that f is an increasing function on (0, 1]. As f(q) = q, we may conclude
that f(x) ≥ q for x ≥ q. Thus,

θk(p) ≥ q

for all k ≥ 0.

With a little more work one can show that

lim inf
k→∞

θk(p) = q.

One consequence of this is that with probability at least q the descendants of the organism never
die out. That is, they exist for an infinite number of generations.

4.5 The Number of Descendants

We will now do a more detailed analysis in which we examine the number of descendants of an
organism. We will perform this analysis in a more general setting. Each organism will divide
into k others. We set the probability that an organism survives to reproduce to p = c/k. In the
sub-critical regime (c < 1) we will see that it is very unlikely that the organism has too many
descendants. In the super-critical regime (c > 1) we will see that once the number of descendants
of an organism becomes sufficiently large it is likely to be infinite.

Remark I should have said during lecture that, just as in the case with k = 2, we can prove that
for c > 1 there is a constant probability of an organism spawning an infinite number of generations.
Maybe I’ll put this on the first problem set.

We will find it useful to assign a number of every cell that survives to reproduce. We number the
first cell 1. We must use consecutive numbers in a consistent manner, and must assign every cell a
lower number than each of its descendants. For example, if there are j cells in the first generation
that survive to reproduce, we could assign them numbers 2 through j + 1. We could then assign
numbers to the cells in the second generation, and so on.

For each j such that cell j survives to reproduce, we introduce Bernoulli random variablesXj,1, . . . , Xj,k

where Xj,i = 1 if the ith child of cell j survives to reproduce. Cell u is the last surviving member
of the population precisely when

1 +
u∑

j=1

k∑
i=1

Xj,i = u
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and for all v < u

1 +
v∑

j=1

k∑
i=1

Xj,i > v.

We will now use the Chernoff bounds to bound how unlikely this is in the sub-critical case. Define

X(u) =
u∑

j=1

k∑
i=1

Xj,i.

The expectation of X(u) is
µ = ukp = uk

c

k
= uc.

For c < 1 this becomes significantly less than u and the Chernoff bounds will imply that X(u) is
very unlikely to be more than u. Before we carry out the details of that argument, let me put one
issue to rest. You might worry that X(u) is only defined if cell u actually survives to reproduce.
You may then worry about what it means to take this sum if X(u−1) < u−1. To make these notions
precise, consider sampling all the variables Xj,i for 1 ≤ j ≤ u and 1 ≤ j ≤ k without thinking
about the Galton-Watson process. If it turns out that organism j does survive to reproduce, then
and only then look at the variables Xj,i to figure out which of its children survive to reproduce. If
organism j never exists, then just throw away the unused variables2.

Let Z be the number of descendants of the first organism, plus 1 for the first organism (or view Z
as a descendant of itself). We can now say that

Pr [Z > u] ≤ Pr
[
X(u) ≥ u

]
≤ exp

(
−1

3
δ2µ

)
,

where we set δ so that

(1 + δ)µ = u

(1 + δ)uc = u

(1 + δ) =
1
c

δ =
1
c
− 1,

which is greater than 0 in the sub-critical case. We conclude that

Pr [Z > u] ≤ exp
(
−1

3
(1− c)2

c
u

)
.

So, the probability that there are more than u descendants decreases exponentially with u. This is
why all the components of G(n, p) in the sub-critical case probably have logarithmic size.

Remark This bound is actually much stronger than the bound we proved on the number of
generations spawned by the first organism, as the number of descendants can be exponential in the
number of generations.

2This may worry you, but I assure you that you can make it formal.
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In the super-critical case we will perform a similar analysis. We will show that it is very unlikely
that Z = u for any sufficiently larger u. By summing over all large u we will conclude that if Z is
not small then it is probably infinite. Here the expectation of X(u) is also cu, but c > 1. We have

Pr [Z = u] ≤ Pr
[
X(u) ≤ u

]
≤ exp

(
−1

2
δ2µ

)
,

where we set δ so that

(1− δ)cu = u

(1− δ) =
1
c

δ = 1− 1
c
,

which is greater than zero in the super-critical case. We thereby conclude that

Pr [Z = u] ≤ exp
(
−1

2
(c− 1)2

c
u

)
= exp

(
−1

2
(c− 1)2

c

)u

.

Define

γ = exp
(

1
2

(c− 1)2

c

)
.

By summing an infinite series we can now bound the probability that Z is a large but finite number.
We have

Pr [u ≤ Z <∞] =
∞∑

w=u

Pr [Z = w] ≤
∞∑

w=u

γ−w =
γ−u

1− γ−1
.

So, this probability also decreases exponentially with u. This is part of why the second-largest
component of G(n, p) in the super-critical case probably has logarithmic size. This is also partic-
ularly interesting as we know there is a constant probability that there are an infinite number of
generations. In particular, this implies that

∞∑
w=1

Pr [Z = w] < 1.

4.6 The Giant Component in a Graph

There is no way that we are going to get this far in this lecture. So, I will save it for next lecture.
For now, I just say that it is a mathematically simple but conceptually interesting consequence of
our analysis of the Galton-Watson process.
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