Preconditioning Next lecture: time
$$O(ml_{S}+l_{s}+l_{s})$$

Solve equations in A by solving systems in a
"preconditioner" B_{1} and multiplying by A .
 CG_{1} Richardson, Chebyshoe just used mults be A .
 $\# eA$ iterations depends on $H(A_{1}B) = \frac{\lambda_{max}(B^{*}A)}{\lambda_{min}(B^{*}A)}$
orthogonal to common nullspace, if there is one.
Lem $\lambda_{max}(B^{*}A) = \min\{\beta : A \leq \beta B\}$
 $\lambda_{min}(B^{*}A) = \max\{\alpha : \forall B \leq A\}$
 $proof \quad A \leq \beta B$ iff H_{X} with $= \beta \times TB + \frac{1}{\sqrt{T}} B^{*} = \beta$
 $(=) \frac{\sqrt{T}B^{*b}A}{\sqrt{T}} B^{*b} \frac{1}{2} \beta$
 $(=) \frac{\sqrt{T}B^{*b}A}{\sqrt{T}} B^{*b} \frac{1}{2} \beta$
 $(=) \frac{\sqrt{T}B^{*b}A}{\sqrt{T}} B^{*b} \frac{1}{2} \beta$
 $(=) \lambda_{max}(B^{*A} - B^{*b}) \frac{1}{2} \beta$
 $(A_{1}B) \leq \frac{1}{2} \alpha$ where $\alpha B \leq A \leq \beta B$
 $Cor. \quad A \leq B$ iff $B^{*} \leq A^{-1}$

Recall,
$$\tilde{x}$$
 is $s = approx sol + Ax=b$ if
 $([\tilde{x} - x]_A \leq s||A||]$.
A very good precen would be B sol. [15] B $\leq A \leq (h \in)$ B
By cor, and a result from lost lecture,
 $[[B^T Ax - x]]_A \leq s||A||$ for all x .
Iterative Refinement is a procedure for increasing allowacy.
Set $x_1 = B^T b = B^T Ax$
resolval $r_1 = b - Ax_1$
If $Ay = r_1$, then $A(x_1 + y) = Ax_1 + b - Ax_2 = b$
So, set $x_2 = B^T r_1$
Now, $[[[X - (x_1 + x_2)]]_A = [[(x - x_1) - x_2]]_A$
 $\leq s^2 |[A|]_A$
If repeat k times, can get an s^k approx solution
ofter k iterations
each using a multist A
solve in B
So, once (an get an $s - approx - for some constant ε
(an achieve (n 12 dependence
Origin: going from low to high precision.$

Most preconditioners are not this good.
But, it can solve B quickly, then apply in CS
or Clubby show.
Let
$$\lambda_{1...} \lambda_{n}$$
 be eigs of $B^{n}A = eigs$ of $A^{1/2}B^{-1}A^{1/2}$
If $q(k) = 1 - xp(k)$ is a poly st. $(q(\lambda_{1})) = \varepsilon$ #i,
then $\widehat{x} \triangleq p(B^{n}A)B^{n}b$
is an ε - approx solution to $Ax = b$
Prod:
 $||A^{1/2}x - A^{1/2}p_{\varepsilon}(B^{n}A)B^{n}A^{n}||$
 $= ||A^{1/2}x - A^{1/2}p_{\varepsilon}(B^{n}A)B^{n}A^{n}||$
 $= ||A^{1/2}x - A^{1/2}p_{\varepsilon}(B^{n}A)B^{n}A^{n}||$
 $= ||A^{1/2}x - A^{1/2}p_{\varepsilon}(B^{n}A)B^{n}A^{n}||$
 $= ||A^{1/2}p_{\varepsilon}(B^{n}A)B^{n}A^{1/2}|| \cdot ||A||A$
I - $A^{1/2}p_{\varepsilon}(B^{n}A)B^{n}A^{1/2} = I - P_{\varepsilon}(A^{1/2}B^{n}A^{1/2})A^{1/2}B^{n}A^{1/2}k$
 $= q_{\varepsilon}(A^{1/2}B^{n}A^{1/2})$
As $A^{1/2}B^{n}A^{1/2}$ is symmetric,
 $||q(A^{1/2}B^{n}A^{1/2})|| \le \varepsilon$
Preconditioned CG - PCG flucts the best polynomial.
Bat, because polynomial depends on inpat,
is not a linear operator.

Recon Clieby - needs to know & and BI but is a linear operator. Laplacians Waidya: precondition LG by LH for H⊆G Gaarantess LH LLG Just need to know B st. LG & BLH Use a spanning tree T. (an solve equations in LT in time O(n) elimination takes time O(n) because every tree has a verter of degree 1, and eliminating it gives another tree. Will show is a tree T st. B & C.m. Ign. Iglyn, for some constant C. Now Xmax (LHLG) ETr/LtiLe? lem. $Tr [L_{H}^{\dagger} L_{G}] = \sum_{(a,b) \in E} w_{a,b} \operatorname{Stretch}_{T} (q,b)$ where view length of an edge as weight stretch, (a,b) = length of path in T from a b b mult by was = divide by length of (a, h) edge

prof
Worke
$$L_{G} = \sum_{a \in b} w_{a,b} (\delta_{a} - \delta_{b}) (\delta_{a} - \delta_{b})^{T}$$

 $Tr \left[L_{t1}^{T} L_{G} \right] = \sum_{a \neq b} w_{a,b} (Tr \left[L_{t1}^{T} (d_{a} - \delta_{b}) (d_{a} - \delta_{b})^{T} \right]$
 $= \sum_{a \neq b} w_{a,b} (d_{a} - \delta_{b})^{T} L_{t1}^{T} (d_{a} - \delta_{b})$
 $= \sum_{a \neq b} w_{a,b} (d_{a} - \delta_{b})^{T} L_{t1}^{T} (d_{a} - \delta_{b})$
 $= \sum_{a \neq b} w_{a,b} Roff_{T} (c, b)$
 $Roff_{T} (c, b) = \sum_{a \neq b} w_{b} rown over weights of edges$
on the conque path in T between a and b.
 $= \sum_{a \neq b} w_{a,b} Streth_{T} (e_{b})$
Theorem Every weighted graph $G = (U_{c}E_{c}A)$
 $hess a granning Tree $T = (v_{c}F_{c}A)$ with $F \leq E$
 $st. \sum_{a \neq b} w_{b,b} Streth_{T} (e_{b}) \in O(m \lg n \lg \lg n)$
 $(a_{c}b) \in E$
And, can compute it in time $O(m \lg n \lg \lg n)$
 $= Streth_{T} (b_{b})$$

Given T_i can compute stretching (G), use it to set B,
and run Precen Cheby for
$$e(JB | g| |_{2})$$
 iterations
to set Σ -accurate solution.
Each iteration takes time $O(m) = mult by Le $O(n) = solve in CH$
so total is $O(m^{3/2}) \overline{[g_{m}| g_{g_{m}}| g_{m}| g$$

Set
$$q(x) = \tau(x) \prod_{j=n-k+i}^{n} \left(\left(-\frac{x}{\lambda_{j}} \right) \right)$$

so $q(x) = \tau(0) = 1$
 $q(\lambda_{i}) = 0$ $i = n-k$
for $i \le n-k$, $\lambda_{i} \le \beta$
so $q(\lambda_{i}) = \tau(\lambda_{i}) \prod_{j=n-k+i}^{n} \left(1 - \frac{\lambda_{i}}{\lambda_{j}} \right)$
 $\le \varepsilon$
 $q(\lambda_{i}) = \varepsilon$