Spectral and Algebraic Graph Theory 462/562
(formerly grad course numbered AMTH 561/CPSC 662)
Spectral = eig vals and eig vecs

Grad/grad => I assume less.
 Grads get extra homework problems
 More applied ICS focus
 But still very mathy

Can find lecture notes from previous years.
Writing a book now. The book will have
details I cannot cover in class.

I will distribute my handwritten notes, when I
have them.

Assignments: 5-6. Probably 6. Can work in small groups
(for now). No tests or exam.

Occasional recommended exercises, especially for
this lecture.

Prereqs: linear algebra, graph theory, some probability.
 proof-based exposition, endurance

Today: Intro, overview, a proof or two.
 Get used to my notation.
Please interrupt when necessary.
Graphs. \(G = (V, E) \) \(E \) is set of pairs of \(V \).
Write edges as \((a, b)\), although \((a, b)\) would be better.
\((a, b) = (b, a)\)
Undirected.
No self-loops or multi-edges.
Usually.

Might be weights on edges. If so, almost always positive.

Sources: social networks, comm. networks, etc.
abstract like
path on \(n \) vertices. \(U = \{1, \ldots, n\} \)
\(E = \{(a, a+1) \mid 1 \leq a < n\} \)
ring: path plus edge \((1, n)\)
hypercube: \([01]^d\) \[U = \{0, 1\}^d \]
\((a, b) \in E \) if \(|\{i : a(i) + b(i)\}| = 1 \)
random.
edge \((a, b)\) appears with probability \(p \),
independently chosen.
Matrices for graphs.

Adjacency. \(M \) rows/cols labeled by \(V \).
\[
M(a,b) = \begin{cases} 1 & (a,b) \in E \\ 0 & \text{o.w.} \end{cases}
\]

Is using matrix as a spreadsheet.

Very surprising eigenvalues or eigenvectors should matter.

Diffusion Operator / walk Matrix.

Let \(D \) = diagonal matrix of degrees.
\[
d = M \cdot 1 \quad D = \text{diag}(d)
\]
\[
W = D^{-1} M
\]

Let \(p \in \mathbb{R}^V \) be a vector of \(p(a) \) = amount of stuff at vertex \(a \).

If stuff at \(a \) moves to neighbors of \(a \), evenly, then new distribution of stuff is
\[
p' = p' D^{-1} M
\]

Total amount of stuff, \(p' \cdot 1 \), is conserved because
\[
p' \cdot 1 = p' D^{-1} M 1 = p' D^{-1} d = p \cdot 1
\]

Expect spectra of \(W \) to matter.
Laplacian \[L = D - M \]

defines a natural quadratic form:

for \(x \in \mathbb{R}^n \), \(x^T L x = \sum_{i,j} (x(i) - x(j))^2 \)

\(C(i,j) \in \mathbb{E} \)

\[\text{e.g.} \quad \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 3 \end{array} \quad \begin{bmatrix} x^T L x \end{bmatrix} = 1^2 + 2^2 = 5 \]

Spectral Theory

\(\psi \) is an eigenvector of \(M \) of eigenvalue \(\lambda \) if

\[M \psi = \lambda \psi \]

Theorem Every real symmetric \(n \times n \) matrix \(M \) has \(n \) real eigenvalues \(\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n \) and \(n \) orthonormal eigenvectors \(\psi_1, \psi_2, \ldots, \psi_n \)

\[
\begin{pmatrix}
\psi_1^T \\
\psi_2 \\
\vdots \\
\psi_n
\end{pmatrix} = \begin{pmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}
\]

s.t. \[M \psi_i = \mu_i \psi_i \]

Note: \(\psi_1, \psi_2 \) not uniquely defined.

Examples in Jupiter
Course topics

Graph structure: cuts, coloring, indep sets, partitioning, local partitioning

The zoo: fundamental examples
Estimating eigenvalues
Random walks
Physical models: springs & resistors
Effective resistance and elimination
Expanders - extremal combinatorics
 relation to codes and pseudo-randomness
Sparsification
Solving Laplacian equations
 and computing eigenvectors.
Def The Rayleigh Quotient of \(x \) with respect to \(M \) is
\[
\frac{x^T M x}{x^T x}
\]

Theorem If \(M \) is symmetric and \(x \) maximizes \(\frac{x^T M x}{x^T x} \) then \(Mx = \mu_i x \).

Will expand \(x = \sum_{i=1}^{n} c_i \psi_i \), where \(c_i = \psi_i^T x \)

Why? Well \(x = \sum x(i) \delta_i \), where \(\delta_i \) is eigenvector
in direction \(i \),
and \(x(i) = \delta_i^T x \).

And, \(\sum_i c_i \psi_i = \sum_i \psi_i \cdot \psi_i^T x = \left(\sum_i \psi_i \psi_i^T \right) x = \mathbf{I} x = x \)

Claim \(x^T M x = \sum_i c_i^2 \mu_i \), where \(c_i = \psi_i^T x \)

Proof
\[
x^T M x = \left(\sum_i c_i \psi_i \right)^T M \left(\sum_j c_j \psi_j \right)
\]
\[
= \left(\sum_i c_i \psi_i \right)^T \left(\sum_j c_j \psi_j \right)
\]
\[
= \sum_i c_i^2 \mu_i \]
\begin{align*}
\quad \text{as } \quad \Psi_i^T \Psi_j &= \begin{cases}
1 & i=j \\
0 & \text{o.w.} \end{cases} \\
\quad = \sum_i C_i^2 \lambda_i \\
\end{align*}

\underline{Proof of Theorem} \quad \text{for all } x

\begin{align*}
\frac{x^T M x}{x^T x} = \frac{\sum_i C_i^2 \mu_i}{\sum_i C_i^2} &\leq \frac{\sum_i C_i^2 \mu_1}{\sum_i C_i^2} \\
\quad \text{as } C_i^2 &\geq 0 \text{ and } \mu_1 \geq \mu_i, \quad \forall i \\
\quad = \mu_1 \\
\end{align*}

and equality only holds if \(C_i^2 = 0 \) for \(\mu_i < \mu_1 \).