Graphs and Networks Lecture 2

Growth and Erdos-Rényi Graphs
Daniel A. Spielman September 3, 2013

2.1 Disclaimer

These notes are not necessarily an accurate representation of what happened in class. They are
a combination of what I intended to say with what I think I said. They have not been carefully
edited.

You should be able to find a diary of my Matlab session from today’s class. It may reveal compu-
tations that do not appear in these notes.

2.2 Announcement

The class is moving to WLH 119.

2.3 Introduction

We will begin class by examining the rate of growth of neighborhoods of vertices in some of our
graphs. We will then see that graphs chosen from a natural distribution also have fast growth.
In the lecture, we will encounter some inequalities that occur frequently in probabilistic analysis.
These appear in boxes. I suggest that you learn them all.

I remark that there are three approaches to the analysis of random graphs. The first, favored by
our textbook, is to give an intuitive, but not mathematically rigorous, explanation of what should
happen. The second, which I take, is to give a rigorous exposition of weak bounds on what should
happen. The third, which would take too long, would be to give a rigorous exposition of sharp
bounds on what should happen.

2.4 Growth in Graphs

We are going to examine the growth of BFS (bread-first-search) balls around nodes in graphs.
These are the sets of vertices within a given distance of some one vertex. For a vertex a and a
number r, we define the ball of radius r around a to be the set of vertices of distance at most r
from a. Here, the distance from a to b is the least number of edges in a path from a to b. We define
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the sphere of radius r around a to be the set of vertices of distance exactly r from a. Symbolically,
these are
B(r,a) ¥ {be v : dist(a,b) <1},
and
S(r,a) = B(r,a) \ B(r — 1,a).

We will now look at the sizes of these spheres in some of our graphs by using the matlab code
randGrowth. It picks a random vertex, and then returns the numbers of vertices in each sphere
around that vertex.

>> load Bg_S_cerevisiae
>> sizes = randGrowth(a); sizes’

974
5203
358

>> sizes = randGrowth(a); sizes’
ans =

153

5207

1177

7

>> sizes = randGrowth(a); sizes’

70
5079
1380

15

That was very rapid growth.
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>>
>>

si

h

>>
>>
>>
>>
>>
>>
>>

load amazon0601
sizes = randGrowth(a); sizes

zes =
Columns 1 through 6

1 10

Columns 7 through 12
2899 8721
Columns 13 through 18
61634 47526
Columns 19 through 24
3510 1873
Columns 25 through 30
112 71
Columns 31 through 36
13 18

Column 37

36

22312

33607

1075

62

11

118

43637

21122

621

27

14

This has a long tail. Let’s plot the sizes of

clf;

semilogy(sizes); hold on; semilogy(sizes,’o’)
hold on

sizes = randGrowth(a); sizes

semilogy(sizes,’g’); hold on;

sizes = randGrowth(a); sizes

semilogy(sizes,’r’); hold on;

3

3

319

63822

11993

313

15

19

the spheres.

semilogy(sizes,’go’)

semilogy(sizes,’ro’)

2-3

931

69655

6442

194

27

28
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>>
>>

si

>>
>>
>>
>>
>>
>>
>>

40

load dblp
sizes = randGrowth(a); sizes
zes =

Columns 1 through 6
1 3 27 191
Columns 7 through 12
93641 123185 55657 15323
Columns 13 through 17
239 90 14 4
clf
semilogy(sizes); hold on; semilogy(sizes,’o’)
sizes = randGrowth(a); sizes;
hold on
semilogy(sizes,’g’); hold on; semilogy(sizes,’go’)

sizes = randGrowth(a); sizes;
semilogy(sizes,’r’); hold on; semilogy(sizes,’ro’)

2285

3667

21806

946
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I don’t want you to get the idea that all graphs exhibit such growth. Graphs that are inherently

low dimensional do not. For example, let’s look at a road network.

>> load r
>> sizes

sizes =

Columns

Columns

Columns

Columns

Columns

oadNet-CA

= randGrowth(a); sizes

1 through 6

7 through 12

5
13 through

24

18

36

19 through 24

88

91

25 through 30

148

165

39

92

200

12

40

89

229

12

64

109

237

15

69

123

251
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Columns 31 through 36

243 250 263 272 320 366
>> clf
>> semilogy(sizes); hold on; semilogy(sizes,’o’)
>> hold on

sizes = randGrowth(a); sizes

>> semilogy(sizes,’g’); hold on; semilogy(sizes,’go’)
>> sizes = randGrowth(a); sizes;

>> semilogy(sizes,’r’); hold on; semilogy(sizes,’ro’)

Some graphs exhibit stranger behavior. For example, the following web graph has rapid initial
growth, but a long tail.

>> load web-NotreDame

>> clf

>> sizes = randGrowth(a);

>> semilogy(sizes); hold on; semilogy(sizes,’0’)

>> sizes = randGrowth(a);

>> semilogy(sizes,’r’); hold on; semilogy(sizes,’ro’)
>> sizes = randGrowth(a);

>> semilogy(sizes,’g’); hold on; semilogy(sizes,’go’)
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35

2.5 Random Graphs

We will now introduce the Erdos-Rényi model of random graphs, and prove that it exhibits rapid
growth. This is not a particularly good model of “real-world” graphs. We study this model because
it is simple and because the analysis of this model is similiar to the analysis of many better models.
And, we have to start somewhere.

In the Erdos-Rényi model, each edge is chosen to appear in the graph independently with the
same probability. For an integer n and a probability p € (0,1), the distribution G(n,p) produces a
random graph on n vertices by choosing each possible edge to appear in the graph independently
with probability p.

The expected number of edges in a graph chosen from this distribution will be

n
9 b,
and that the expected degree of each vertex is
(n—1)p.

As long as p is not too small, it is unlikely that the degree of any vertex deviates too much from
its expectation. One proves such statements using “large-deviation bounds”. We will see some of
these in a few minutes. But first, we will examine whether the graph is connected.

2.6 Connectivity

It turns out that the graph is probably connected if p > Inn/n, and that it is probably not connected
if p <Inn/n. This is called a “threshold phenomenon”, and it is the mathematical inspiration for



Lecture 2: September 3, 2013 2-8

the concept of a “tipping point”. We will see others in the next few weeks.

We begin by showing that if p = (1 + €)Inn/(n — 1), for any € > 0, then a graph sampled from
G(n,p) is probably connected. To make that statement clear, we set € to a fixed constant and then
look at what happens when n grows big. In our analysis, we will not concern ourselves with small
n.

To begin, let a be any vertex, and let I, be the event that vertex a is isolated. That is, that a
has no edges. We begin by showing that it is unlikely that there is any isolated vertex. To begin,
observe that

Pr[l,)=(1—-p" "

To prove an upper bound on this probability, we use the inequality

[1—p<exp(-p)|

We will use this inequality often.

We now compute

Pr(l] = (1—p)" " <exp(—p(n—1)) =exp(—(1 +¢)Inn) =n 079,

So, the probability that there exists an isolated vertex satisfies®

Pr(da:I,] < ZPI‘ (1) <nxn 0+ =pe

So, it is unlikely that there is any isolated vertex.

It turns out that when isolated verties are unlikely, the graph is probably connected. In order for
the graph to be disonnected, there would have to be a subset S of the vertices such that there are
no edges leaving S. We call such a set of vertices S a cut. If o = |S|, then the probability S is a
cut is (1 — p) raised to the number of possible edges leaving S, which is

(1-p)7"") < exp (—po(n - 0))
So, the probability that there exists a cut S of size ¢ is at most
n
(2) exp (-pota— o).

To show that this probability is small, we will divide it into two cases. When o is small, we will
use the bound
n
( ) S ng '
o

'We are using the “Union Bound” here. The union bound is an extension of the fact that for any two events A
and B, Pr[A or B] < Pr [A] + Pr [B]. While this is simple, it is given a name to help us remember it and to help
us remember to try using it.
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In particular, for o < en/3, we have
exp (—po(n — o)) = exp <—(1 + e)U(n_la) In n) <exp(—(1+¢/3)olnn) < n-(1Fe/3)e,
n—

So, the probability that there is a cut S of size ¢ is at most

nan—(l—l—e/?))a _ n—(e/S)a'

Summing over the sizes between 1 and en/3, we find that the probability that there is such a cut
with size in this range is at most

en/3
S 87 = /9 (1 — (),
o=1

This goes to zero as n grows large.

To handle the larger sets, we use the inequality

() <)

Now, for en/3 < o < n/2, the probability that there is a cut S of size o is at most

(Z) exp (—po(n — o)) < (%)U exp (—po(n — o))
< (3j)gexm—po<n/2>>
< (Z)f)gexp(—(l + ) Inno/2)
= (qatiar)

For n(1+9)/2 > 3e/e, these terms decrease geometrically as n grows. So, their sum is at most
()
en(lt+e)/2
1= (arttor)
which also goes to zero as n grows large.

2.7 Isolated Vertices

We now observe that if p = (1 —¢€)In /(n — 1), then there are likely to be isolated vertices. For this
analysis, we use the inequality

[1—p>exp(—p(1+p))

9
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which holds for 0 <p < 1/2.

We have )
Pr(l,] = (1-p)" "' > exp (—p(1 +p)(n — 1)) = (n**#) "7,

Let’s first get rid of that annoying 1 + p. We have
n'*P? = exp (Inn + (1 — €)(Inn)?/n) < nexp ((Inn)?/n) < 2n,

for n sufficiently large.

When this holds, we have
(n1+p)—(1—6) > (2,”/)7(176)'

The expected number of isolated vertices is
> PriL],
a

which is at least

n
Gy ="

Note that we can improve this bound to n¢(1 — «) for any a > 0.

Actually, proving that the expected number of isolated vertices is large does not imply that there is
probably an isolated vertex: it is conceivable that there is rarely an isolated vertex, but that when
there are isolated vertices there are many. You will prove that this is not the case in Problem Set
1.

2.8 Large Deviations

There are many types of large deviation bounds. The ones that we will usually use are the Chernoftf-
Hoeffding bounds. These are not always the sharpest in all regimes, but they have the advantages
that they will always be true and that they will usually allows us to obtain results that are quali-
tatively correct. They have many forms. We will use? the following.

Theorem 2.8.1. Let Xi,...,X,, be independent Bernoulli (that is, 0/1 valued) random variables
with Pr[X; = 1] =p;. Let X =Y X; and let p = > p; be the expectation of X. Then,

a. forall0 < § <1,

- 1
PriX < (1—6)] < <(1_5)5) < exp (—u6?/2)

2Many forms of Chernoff bounds may be found. It is often convenient to prove one’s own. The form we use here
appears in [MUOQ5]. Other useful forms and derivations may be found in [AS00, MR95, DP09].
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b. for all § > 0,

0 1
PriX > (1+40)p] < <(1+5)1+5> )

c. for0<d<1
Pr(X > (1+0)p) < exp (—ué?/3).

For now, consider p = 2Inn/(n — 1). For any particular vertex, its expected degree is u = 2Inn.
We will now show that it is unlikely that there is any vertex with degree larger than 51lnn. Setting
d = 3/2 so that

(144)2lnn =>51nn,

part b of Theorem 2.8.1 tells us that the probability that any particular vertex has degree larger
than 51nn is at most

o0 p
<(1+5)1+5> , < (0.46)21"" < exp (—(3/2)Inn) = n=3/2.

As there are n vertices in the graph, the probability that there is one with degree larger than 5lnn
is at most n~1/2,

We can also show that it is unlikely that there is a vertex of degree less than (1/5)Inn. From the
first Chernoff bound, with § = 9/10, we learn that the probability that any particular vertex has
degree less than (1/5)1nn is at most

((1—66(;1—5)# N <(1_65§1—5>21M < exp (—(4/3)Inn) = n~ 13,

So, the probability that there is any vertex with degree less than (1/5)Inn is at most n~1/3.

To see how loose these bounds are, I generated a number of graph from this distribution with
n = 10,000. The expected degree was just slightly above 23. The maximum degree was usually
around 47, and the minimum degree was usually around 5.

2.9 Rapid Growth of BFS Balls

We will now show that BFS balls in Erdés-Rényi graphs with p = 2lnn/(n — 1) grow rapidly. You
could do the same analysis with p = (1 +¢)Inn/(n — 1) for any € > 0, with a little more work.

Our analysis will have two limiting cases. As when we proved connectivity, singleton sets will be
one limiting case. The other will be large sets. Very large spheres cannot grow too much, because
they can run out of space to grow. We will show that, until this happens, each sphere probably
grows by a factor of at least (1/5) lnn.

Theorem 2.9.1. Let G be a graph chosen from G(n,p) with p = 2Ilnn/n. Let a be a vertex of G
and let v be an integer. If |B(r,a)] <n/12Inn, and s = |S(r,a)|, then

Pr(|S(r+1,a)| < (1/5)slnn] < n~ 1%,
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Proof. Let b = |B(r,a)|. Let C be the set of nodes that are not in B(r,a). Each of them has a
chance of being a neighbor of a node in S(r,a). The probability that one of them is not a neighbor
of a node in S(r,a) is

S

(L—p) <1-ps+ (2

> p*  (by inclusion-exclusion).

So, the chance that each is a neighbor of a node in S(r,a), in which case it is in S(r + 1, a), is
1—(1-p)°>ps(l—ps/2).
We pause to simplify this expression. We have

2lnn n 1

< = —.
P> n 12lnn 6

So,
ps(1 —ps/2) > (11/12)ps.

So, the expected number of nodes in S(r + 1,a) is at least
(11/12)ps(n — b) > (11/12)%psn > (10/12)psn = 5(20/12) Inn.

We can apply Theorem 2.8.1 to upper bound the probability that the size of this set is less than
(1/5)sInn. To do this, we set § = 46/50, and find that the probability is at most

o0 $(20/12)Inn

- < (0.3022 slnn < 71.25'
(5 = (st =

O

There is one subtlety in this proof that I should mention: I used the fact that the edges between

B(a,r) and the rest of the graph are random, even though I am making assumptions about B(a,r).

The reason I can do this is that those edges do not depent on B(a,r) . That is, we could have
written the statement of the theorem as

Pr ||S(r+1,a)| < (1/5)Inn|S(r,a)| ‘ |B(r, a)|zn/121nn} < pL2ASra)l,

One way of thinking of this is to consider the BF'S procedure. At the point where it has determined
the ball B(r,a), it has not examined any of the edges leaving the set of vertices in this ball.

2.10 Diameter

In the next lecture, we will extend this argument to show that this graph probably has logarithmic
diameter.
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