
Graphs and Networks Lecture 9

Spectral Analysis of Random Walks

Daniel A. Spielman September 26, 2013

9.1 Disclaimer

These notes are not necessarily an accurate representation of what happened in class. They are
a combination of what I intended to say with what I think I said. They have not been carefully
edited.

9.2 Overview

We begin by reviewing the basics of spectral theory. We then apply this theory to show that
lazy random walks do converge to the steady state. In fact, we show that the rate of convergence
depends on the gap between the first and second largest eigenvalues of the lazy walk matrix.

An obvious obstruction to convergence of random walks are sets of vertices with very few edges
leaving them. We measure this by the conductance of the set, and show that the convergence time
is at least the reciprocal of the conductance. We finish by stating Cheeger’s inequality, which gives
a close relation between conductance and the spectral gap. It says that, at least to first order, the
only barriers to rapid mixing are sets of low conductance.

9.3 Maximum Density Decreases

When first contemplating diffusion, you might think that the maximum amount of mass at any
node decreases over time. But, this is not necessarily true. Consider a graph with 4 vertices, a, b,
c and d, and 3 edges: (a, b), (a, c) and (a, d). Let’s start with mass 1/3 at b, c and d and mass 0 at
a. After one step of the lazy random walk, the mass at a will be 1/2.

While the maximum mass at a vertex can increase, the maximum mass at a socket cannot. Recall
that the amount of mass at a socket belonging to a node a of degree d is p(a)/d(a).

Theorem 9.3.1. For every probability vector p,

max
a∈V

p(a)

d(a)
≥ max

b∈V

(Ŵp)(a)

d(a)
.

Proof. Let

α = max
a∈V

p(a)

d(a)
.
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Now, for any node b ∈ V , let’s see how much mass can wind up at node b after one step of the lazy
random walk. The amount of mass at b will be one-half of what was there before, plus one half of
what each neighbor sends along. A neighbor c of b sends a 1/2d(c) fraction of its mass. So,

(Ŵp)(b) = (1/2)p(b)+
∑

(c,b)∈E

p(c)/(2d(c)) ≤ (1/2)αd(b)+
∑

(c,b)∈E

α/2 = (1/2)αd(b)+d(b)α/2 = αd(b).

The theorem follows.

9.4 Obstructions to Convergence

The obstructions to convergence of diffusion are sets of vertices with many internal edges but few
edges leaving. These are the generalization of what we have called “tenticles”. I now define and
quantify them formally. We first define the boundary of S, written ∂(S), by

∂(S)
def
= {(u, v) ∈ E : u ∈ S, v 6∈ S} .

We will want to divide this by a measure of S. The natural measure on S is given by π, but we
use d for convenience:

d(S)
def
=
∑
a∈S

d(a).

We define the conductance of S, written φ(S), to be

|∂(S)|
d(S)

,

where |∂(S)| is the number of edges in ∂(S).

If φ(S) is small, than a random walk that starts behind S will take a long time to move its
probability mass outside S. In particular, we can show this for the distribution given by restricting
π to S. We denote this distribution πS , where

πS(a) =

{
d(a)/d(S) if a ∈ S
0 otherwise.

That is, πS is the distribution on vertices that chooses a vertex in S with probability proportional
to its degree.

To measure mass inside S, we introduce the indicator vector of S:

1S(a) =

{
1 for a ∈ S
0 for a 6∈ S.

For every vector p,

1TSp =
∑
a∈S

p(a).
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In particular,
1TSπS = 1.

It is easy to show that if p0 = πS then a φ(S)/2 fraction of the probability mass will leave S in
the first step: the mass leaves along the edges in the boundary of S. For an edge (a, b) with a ∈ S
and b 6∈ S, the amount of mass that flows from a to b (in the lazy walk) is

p0(a)/2d(a) = 1/2d(S).

As there are |∂(S)| edges in the boundary of S, the amount of mass that leaves is

|∂(S)| /2d(S) = φ(S)/2.

In fact, one can prove the following.

Theorem 9.4.1. If p0 = πS, then after t steps at most a tφ(S)/2 fraction of the probability mass
will escape S. That is,

1TSpt ≥ 1− tφ(S)/2.

Proof. We know that

max
a

p0(a)

d(a)
= 1/d(S).

So, by Theorem 9.3.1, for every other time i and every vertex a,

pt(a)

d(a)
≤ 1/d(S).

So, for any edge (a, b) with a ∈ S and b 6∈ S, the amount of mass that can move from a to b along
edge (a, b) in step i is at most

1/2d(S).

Thus, the total amount of mass that can leave along edges on the boundary of S is at most
φ(S)/2.

For a linear-algebraic approach to proving this, see Proposition 2.5 of [ST].

9.5 Review of Spectral Theory

Last lecture, we showed that the distribution of a the ordinary random walk on a graph after t
steps is pt = W tp0, where W is the walk matrix of the graph. For the lazy random walk, it is

given by Ŵ
t
p0. The important point for us is that it is obtained by mutiplying many times by

the same matrix. Spectral theory (the eigenvalues and eigenvectors) is what we use when we want
to understand what happens when we multiply by a matrix.

I now recall the basics of the theory. First, recall that v is an eigenvector of a matrix W with
eigenvalue λ if

λv = Wv .



Lecture 9: September 26, 2013 9-4

The geometric multiplicity of the eigenvalue λ is the dimension of the space of vectors v for which
this equation holds.

For symmetric matrices, the spectral theory is particularly elegant. While the walk matrices we
consider are not usually symmetric, we begin by recalling the theory for the symmetric case.

Theorem 9.5.1. [Spectral Theory of Symmetric Matrices] For every n-by-n symmetric matrix M
there is an orthornormal basis of n eigenvectors v1, . . . , vn and a set of n eigenvalues λ1, . . . , λn
such that

λiv i = Mv i

for all i.

Note that some eigenvalues may be repeated in this list. The orthonormality of v1, . . . , vn gives us
an easy way of expanding every vector in this basis. For every vector x

x =
n∑
i=1

(vTi x )v i.

Here the terms vTi x are scalars, and so are the coefficients of the vectors v i in the expansion.

Multiplication by M is easily performed by first expanding in the eigenbasis:

Mx = M
n∑
i=1

(vTi x )v i =
n∑
i=1

M (vTi x )v i =
n∑
i=1

(vTi x )λiv i.

Similarly,

M kx =

n∑
i=1

(vTi x )λki v i.

While the walk matrices W are not symmetric, they are similar to symmetric matrices. Let D1/2

denote the diagonal matrix whose uth diagonal is
√
d(u) and let D−1/2 be the matrix with 1/

√
d(u)

on its corresponding diagonal. We have

D−1/2WD1/2 = D−1/2
(
AD−1

)
D1/2 = D−1/2AD−1/2,

which is symmetric. For the rest of this lecture, we define

M = D−1/2AD−1/2

and
M̂ = (1/2)(I + M ) = D−1/2ŴD1/2.

Observe that M and W have the same eigenvalues, and an easy translation between their eigen-
vectors. For each eigenvector v of M , we have

λv = Mv =
(
D−1/2WD1/2

)
v ,
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so
λ
(
D1/2v

)
= W

(
D1/2v

)
,

and we see that D1/2v is a right-eigenvector of W . This gives the following formula for multipli-
cation by powers of W :

W tx =
(
D1/2MD−1/2

)t
x = D1/2M tD−1/2x =

∑
i

λtiD
1/2v i

(
vTi D

−1/2x
)
. (9.1)

The key point here is that as t increases, the only terms that are changing are the powers of
the eigenvalues. Moreover, every eigenvalue of absolute value less than 1 will have diminishing
contribution. This is why the lazy random walk converges to the steady state: we will show that
all of its eigenvalues are between 0 and 1 and that the steady-state vector is the only one with
eigenvalue 1.

Before I do that, let’s do a sanity check. I’d like to observe that we can use (9.1) to show that
W tπ = π, a fact that we already know. As π is an eigenvector of W of eigenvalue 1, M has a
corresponding eigenvector of eigenvalue 1, which we will call v1 and which is given by

v1 =
D−1/2π∥∥∥D−1/2π∥∥∥ .

We have to divide by the norm because we require v1 to be a unit vector. Let’s see what that norm
is. Recall that π(a) = d(a)/2m, so (D−1/2π)(a) =

√
d(a)/2m. Thus,∥∥∥D−1/2π∥∥∥ =

1

2m

√∑
a

√
d(a)

2
=

1

2m

√∑
a

d(a) =
1√
2m

As the basis v1, . . . , vn is orthnormal and D−1/2π lies in the same direction as v1, we know that

vTi D
−1/2π = 0

for every i ≥ 2 and

vT1 D
−1/2π =

∥∥∥D−1/2π∥∥∥ =
1√
2m

.

So, when we apply equation 9.1, we get

W tπ = D1/2v1(1/
√

2m) = D1/2D
−1/2π

1/
√

2m
(1/
√

2m) = π.

9.6 The eigenvalues of the Walk Matrix

So that we can apply this theory, we now prove some elementary facts about the eigenvalues of the
walk matrix.

Theorem 9.6.1. Let W be the walk matrix of a connected graph. Then, all eigenvalues of W lie
between 1 and −1, and the eigenvalue 1 has multiplicity 1.
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Proof. Our proof of this will be very similar to the proof from last class that the steady-state
distribution is unique. Actually, in that proof we already established that the eigenvalue 1 has
multiplicity 1. If you check the proof, you will see that we never used the fact that p was a
non-negative vector.

Let v be an eigenvector of W of eigenvalue λ. Let a be a vertex for which

|v(a)| /d(a) ≥ |v(b)| /d(b),

for all b. We have
λv(a) =

∑
(a,b)∈E

v(b)/d(b),

and so

|λ| |v(a)| =

∣∣∣∣∣∣
∑

(a,b)∈E

v(b)/d(b)

∣∣∣∣∣∣
≤

∑
(a,b)∈E

|v(b)| /d(b)

≤
∑

(a,b)∈E

|v(a)| /d(a)

= |v(a)| .

So, |λ| ≤ 1.

Corollary 9.6.2. All eigenvalues of Ŵ lie between 0 and 1, and the eigenvalue 1 has multiplicity
1.

Proof. As
Ŵ = (1/2)I + (1/2)W ,

Ŵ has the same eigenvectors as W . Moreover, for every eigenvalue λ of W the matrix Ŵ has an
eigenvalue of (1 + λ)/2.

We now know enough to show that a lazy random walk must converge to the steady state. We will
now make that statement more quantative.

For the rest of the lecture, we let λ1, . . . , λn denote the eigenvalues of the walk matrix, with the
convention

1 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λn.

We now measure how quickly the random walk approaches the steady state.

To state the bound correctly, I introduce a new type of norm. For a symmetric matrix B with
positive eigenvalues (such as a diagonal matrix with positive entries), the B-norm is given by

‖x‖B =
√
xTBx =

∥∥∥B1/2x
∥∥∥ .
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Theorem 9.6.3. Consider the lazy random walk on a connected graph. For every initial probability
distribution p0 and every t ≥ 0 we have

‖pt − π‖D−1 ≤ λt2 ‖p0‖D−1 .

In particular, if the walk starts at vertex a, then for every vertex b we have

|pt(b)− π(b)| ≤

√
d(b)

d(a)
λt2.

Proof. Let p0 be any probability distribution on the vertices. Define

αi = vTi D
−1/2p0.

We begin by observing that

α1 = vT1 D
−1/2p0 =

(d1/2)T∥∥∥d1/2
∥∥∥D−1/2p0 =

1T∥∥∥d1/2
∥∥∥p0 =

1∥∥∥d1/2
∥∥∥ .

Applying equation 9.1 and separating the first term from the rest we find

pt = W tp0 = D1/2v1α1 + D1/2
∑
i≥2

λtiαiv i.

The first term in this sum is simply π:

D1/2v1α1 = D1/2 (d1/2)T∥∥∥d1/2
∥∥∥ α1 =

d∥∥∥d1/2
∥∥∥α1 =

d∥∥∥d1/2
∥∥∥2 =

d∑
a d(a)

= π.

So,

pt − π = D1/2
∑
i≥2

λtiαiv i.

To bound the norm of this term, we note

‖pt − π‖D−1 =

∥∥∥∥∥∥
∑
i≥2

λtiαiv i

∥∥∥∥∥∥ .
As the vectors v i are orthonormal, this equals∑

i≥2
λ2ti α

2
i

1/2

.

For i ≥ 2, λ2ti ≤ λ2t2 . So, this is at most

λt2

∑
i≥2

α2
i

1/2

.
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To finish the proof, we note that∑
i≥2

α2
i

1/2

≤

(∑
i

α2
i

)1/2

=
∥∥∥D−1/2p0

∥∥∥ = ‖p0‖D−1 ,

where the first equality follows from the fact that the v i form an orthonormal basis.

It often happens that λ2 is relatively close to 1. In this case, we focus on the gap between λ2 and
1. That is, we write λ2 = 1− µ. The important term in Theorem 9.6.3 then becomes

λt2 = (1− µ)t ≤ e−tµ.

Thus, we see that convergence starts to happen after 1/µ steps.

9.7 The obstructions to rapid mixing

The main reason a random walk would not converge rapidly is if it started inside a set of vertices
that has few edges leaving it. This naturally corresponds to a community or a cluster in the graph.
We will measure the quality of a cluster of vertices S by its conductance, which we now define.
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