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10.1 Overview

I present a bound on the rate of convergence of random walks in graphs that depends upon the
conductance. This proof was developed by Lovàsz and Simonovits [LS90]. The name “holistic” is
my fault.

First, it’s just cool. Second, it is very different from the spectral proof, and so is likely to extend
to different situations. Third, it has algorithmic applications that the spectral proof does not.

10.2 The Conductance of a Graph

Recall that we defined the conductance of a set S to be

φ(S) =
|∂(S)|
d(S)

.

We now wish to write a definition of the conductance of a graph that gives a lower bound on
the conductance of sets of vertices in the graph. It does not make sense to consider sets S for
which d(S) > d(V )/2, as then the complementary set has larger conductance. So, we define the
conductance of a graph G to be

φG = min
S:d(S)≤d(V )/2

φ(S) = min
S⊂V

max (φ(S), φ(V − S)) .

I remark that it is sometimes more convenient to handle the balance between large and small sets
by removing the min, but computing

m
|∂(S)|

d(S)d(V − S)
.

It never differs too much from
max (φ(S), φ(V − S)) .

10.3 The Holistic Approach to Convergence

At the end of Lecture 8 I gave a “holistic” way of understanding the convergence of a random walk.
I will explain it again, with a slight change of notation.

10-1
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We began by identifying a walk on vertices with a walk on sockets. For an edge (u, v), I will call
(u, v) the socket of that edge where it attaches to u, and (v, u) the socket where it attaches to v.
If p is a probability vector on the vertices, I will map it to a probability vector on the sockets by
distributing the mass at a vertex evenly among its sockets. I call the resulting vector on sockets q .
That is

q(u, v) = p(u)/d(u), for all v so that (u, v) ∈ E.

I then want to consider the sum of the largest k values in q , for varying k. To make this precise, I
define a function Ck that maps a vector q to the sum of its largest k values. That is,

Ck(q) = max
|S|=k

1TSq .

If x is a vector such that x (1) ≥ x (2) · · · ≥ x (n), then

Ck(x ) = x (1) + · · ·+ x (k).

We now measure the convergence of the walk by looking at a plot of k against Ck(q). We make it
piece-wise linear between integer points. When the walk converges, we have q(u, v) = 1/2m for all
sockets (u, v), where m is the number of edges in the graph and so 2m is the number of sockets.
For this vector, Ck(q) = k/2m, and the graph is a straight line. For all other vectors, the graph
is convex. For all probability vectors (non-negative vectors that sum to one), the graph goes from
(0, 0) to (2m, 1).

We will show that the curves obtained at one step of the walk lies beneath the curve from the
previous step, and that the curves approach the straight line faster when the graph has high
conductance.

10.4 Simplification

To simplify this lecture, I am going to assume in all the proofs that the graph is d-regular for a
constant d. I will state the main theorem in full generality at the end of lecture.

10.5 The Curve Goes Down

In Lecture 9 we proved that the maximum mass at a socket does not increase during a walk. In
this section we prove a generalization of this fact.

I begin by pointing out something about diffusion (and random walks) that should be obvious: the
total amount of mass is conserved. That is, for every vector x

1TWx = 1Tx .

This is because 1 is always a left-eigenvector of a walk matrix. The same holds for a lazy walk
matrix.
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Theorem 10.5.1. Let G be d-regular. Let p be a probability vector. Then, for all 0 ≤ k ≤ n,

Ck(Ŵ p) ≤ Ck(p).

I remark that for general graphs we have

Ck(q t+1) ≤ Ck(q t),

where q t is the distribution on sockets at the th step of a walk.

We begin by proving this in the case that p is uniform1 on a subset of vertices.

Lemma 10.5.2. Let G be d-regular. Let S be a subset of the vertices of G, and let s = |S|. Then,
for all 0 ≤ k ≤ n,

Ck(Ŵ 1S) ≤ min(k, s).

In particular,
Ck(Ŵ 1S) ≤ Ck(1S) = min(k, s).

Proof. Every entry of 1S is 1. As G is d-regular, Theorem 9.3.1 (Maximum Density Decreases)

tells us that every entry of Ŵ 1S is at most 1. So,

Ck(Ŵ 1S) ≤ k.

On the other hand, the conservation of mass tells us that

Ck(Ŵ 1S) = max
|K|=k

1TKŴ 1S ≤ 1TŴ 1S = s,

where the inequality exploits the fact that Ŵ 1S is a non-negative vector.

We will prove Theorem 10.5.1 by writing a probability vector as a non-negative combination of
characteristic vectors of sets.

Let p be a non-negative vector. By renumbering the vertices, we may assume without loss of
generality that

p(1) ≥ p(2) ≥ · · · ≥ p(n).

Now, let Si be the set {1, . . . , i}. For 1 ≤ i < n, set

δi = p(i)− p(i+ 1).

Also set
δn = p(n).

We may now write

p =
n∑

i=1

δi1Si .

1In the general case, we use πS .



Lecture 10: October 1, 2013 10-4

Claim 10.5.3. For every 0 ≤ k ≤ n,

Ck(p) =

n∑
i=1

δiCk(1Si).

Proof. We have p(j) =
∑n

i=j δj . So,

Ck(p) =
k∑

j=1

p(j)

=
k∑

j=1

n∑
i=j

δi

=
n∑

i=1

δi
∑

j≤min(i,k)

1

=
n∑

i=1

δi min(i, k)

=

n∑
i=1

δiCk(1Si).

Proof of Theorem 10.5.1 . We have

Ck(Ŵ p) = Ck

(
Ŵ

n∑
i=1

δi1Si

)
≤

n∑
i=1

δiCk(Ŵ 1Si) ≤
n∑

i=1

δiCk(1Si) = Ck(p),

where the second-to-last inequality follows from the fact that

Ck(p+ q) ≤ Ck(p) + Ck(q),

the last inequality follows from Lemma 10.5.2 and the last equality follows from Claim 10.5.3.

10.6 The Stronger Inequality

While we’ve proved that Ck decreases with every step of the walk, we have not yet established how
quickly it decreases. In this section, we will show that it decreases quickly if the graph has large
conductance.

The main lemma we will prove is:

Lemma 10.6.1. Let G be d-regular. Let S be a subset of the vertices of G. Let K be a set of
vertices so that

Ck(Ŵ 1S) = 1TKŴ 1S .
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Set x = φ(K)k. Then,

Ck(Ŵ 1S) ≤ 1

2
(Ck−x(1S) + Ck+x(1S)) . (10.1)

This implies that the curve of values of Ck(Ŵ p) lies beneath a number of chords drawn below the
values of Ck(p).

Theorem 10.6.2. Let G be d-regular, and assume that φG ≥ φ. Let p be a probability vector.
Then, for all 0 ≤ k ≤ n,

Ck(Ŵ p) ≤ 1

2
(Ck−x(p) + Ck+x(p)) ,

where x = φmin(k, n− k).

Proof. For every set K of size k, |∂(K)| /min(k, n− k) ≥ φ. So, φ(K)k = x.

Ck(Ŵ p) = Ck

(
Ŵ

n∑
i=1

δi1Si

)
≤

n∑
i=1

δiCk(Ŵ 1Si)

≤
n∑

i=1

δi
1

2
(Ck−x(1Si) + Ck+x(1Si)) =

1

2
(Ck−x(p) + Ck+x(p)) ,

where the last inequality follows from Lemma 10.6.1 and the last equality follows from Claim 10.5.3.

We again begin our proof by analyzing the case of characteristic vectors of sets of vertices.

Lemma 10.6.3. Let G be d-regular. Let S and K be subset of the vertices of G, and let s = |S|
and k = |K|. Then,

1TK(Ŵ 1S) ≤ s/2 + k/2− φ(K)k/2. (10.2)

Proof. We first consider the case in which K = S. If every edge from S landed in S, that is if
φ(S) = 0, then we would get

1TSŴ 1S = s,

and every edge would contribute 1/2d to the sum. Thus, the amount of mass from K that does
not enter K equals the amount that goes over the boundary edges. This is

(1/2d) |∂(K)| = (1/2d)φ(K)d(K) = (1/2d)φ(K)dk = φ(K)k/2.

So, (10.2) holds in this case.

We now consider the case in which k = s, but K 6= S. Let t be the number of vertices of K that
are not in S. Each of these vertices has degree d and so can receive an amount of mass from S
equal to

(1/2d)d = 1/2.
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On the other hand, for each vertex of K that is outside of S there must be another vertex of S
that is not in K. The set K will fail to receive the half of the mass that stays at this vertex. So,

1TK(Ŵ 1S) ≤ s− φ(K)k/2 + t/2− t/2 =≤ s− φ(K)k/2.

We now extend this argument to sets K of sizes different from S. If K is bigger than S, then we
view it as K0 ∪K1 where |K0| = |S| and K1 ⊆ V − S. We know from the first part that K0 can
receive at most s − φ(K)k/2 mass from S. Each vertex in K1 can receive at most an additional
(1/2) mass from S. So,

1TK(Ŵ 1S) ≤≤ s− φ(K)k/2 + (k − s)/2 = s/2 + k/2− φ(K)k/2.

On the other hand, if k < s then we write K = K0−K1, where |K0| ≤ |S| and K1 ⊆ S. This gives
|K1| ≥ s− k. Every vertex in K1 corresponds to a half-unit of mass from S that does not land in
K. So,

1TK(Ŵ 1S) ≤≤ s− φ(K)k/2− (s− k)/2 = s/2 + k/2− φ(K)k/2.

Extend the definition of Ck(p) to non-integer k by making it linear between integers.

Proof of Lemma 10.6.1. From Lemma 10.6.3, we know

Ck(Ŵ 1S) ≤ s/2 + k/2− φ(K)k/2 = s/2 + k/2− x/2.

We have
Ck−x(1S) = min(k − x, s)

and
Ck+x(1S) = min(k + x, s).

So,
1

2
(Ck−x(1S) + Ck+x(1S)) =

1

2
(min(k − x, s) + min(k + x, s)) .

For k − x ≤ s ≤ k + x, this gives

=
1

2
(k − x+ s) = k/2 + s/2− x/2.

For s < k − x, this gives
1

2
(2s) = s,

which is an upper bound on
Ck(Ŵ 1S)

by conservation of mass. For s > k + x we obtain

1

2
((k − x) + (k + x)) = k,

which is an upper bound on Ck(Ŵ 1S) because each entry of Ŵ 1S is at most 1.
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Theorem 10.6.2 tells us that when the graph has high conductance, the extreme points of the curve
Ct must lie well beneath the curve Ct−1. It remains to use this fact to prove a concrete bound
on how quickly Ct must converge to a straight line. We do this by establishing that each Ct lies
beneath some conrete curve that we can understand well. That is, we will show that C0 lies beneath
some initial curve. We then show that Ct lies beneath the curve that we get by placing chords
accross this initial curve t times, and we analyze how this curve behaves when we do that. We will
call these curves U t. We define

U t(x) = x/n+ min
(√
x,
√
n− x

)(
1− 1

8
φ2
)t

.

As t grows, these curves quickly approach the straight line.

We will prove two lemmas about these curves.

Lemma 10.6.4. For every x ∈ (0, n/2],

U t(x) ≤ 1

2

(
U t−1(x− φx) + U t−1(x+ φx)

)
,

and for every x ∈ [n/2, n),

1

2

(
U t−1(x− φ(n− x)) + U t−1(x+ φ(n− x))

)
. ≤ U t(x).

Proof. This proof follows by considering the Taylor series for
√

1 + x:

√
1 + x = 1 +

1

2
x− 1

8
x2 + · · · ,

from which we learn √
1 + x ≤ 1 +

1

2
x− 1

8
x2.

We apply this to show that

√
k − φk+

√
k + φk =

√
k
(√

1− φ+
√

1 + φ
)
≤
√
k

(
1− φ

2
− φ2

8
+ 1 +

φ

2
− φ2

8

)
=
√
k

(
2− 2φ2

8

)
.

Lemma 10.6.5. For every t ≥ 0 and every x ∈ [0, n],

Ct(x) ≤ U t(x).

Proof. We prove this by induction on t. The base case of t = 0 is simple, so we skip it. To handle
the induction, assume that for every x

Ct−1(x) ≤ U t−1(x).
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For every extreme point xtk ≤ n/2, we may apply Theorem ?? and Lemma 10.6.4 to show

Ct(xtk) ≤ 1

2

(
Ct−1(xtk − φxtk) + Ct−1(xtk + φxtk)

)
≤ 1

2

(
U t−1(xtk − φxtk) + U t−1(xtk + φxtk)

)
≤ U t(xtk).

Here’s the implication of this lemma for convergence of the random walk.

Theorem 10.6.6. For every initial probability distribution and every set of vertices S,

pt(S)− π(S) ≤
√
d(S)

(
1− 1

8
φ2
)t

≤
√
d(S) exp

(
−1

8
tφ2
)
.

10.7 Finding Sets of Small Conductance

I would now like to observe that this theorem gives us another approach to finding sets of small
conductance. Last lecture, we saw Cheeger’s inequality which said that we can find such sets by
examining eigenvectors. We now know that we can find them by studying random walks.

If you look at this proof, you will see that we actually employed a weaker quantity than the
conductance of the graph. We only needed a lower bound on the conductance of the sets S.
That appeared in the proof. If each of these sets had high conductance, then we obtained fast
convergence.

On the other hand, we know that if we start the random walk behind a set of small conductance,
then it will converge slowly. That means that one of the sets S encoutered during the analysis must
have low conductance as well. Let’s make that more concrete. For each t and k, let St

k be the set
of k vertices u maximizing the quantity pt(u)/d(u). Break ties arbitrarily. If each of these sets St

k

has high conductance then the walk converges quickly. So, if the walk converges slowly, then one
of these sets St

k has low conductance. Actually, many do.

Remark Given pt, you can find the k for which the set St
k has least conductance in time O(m).

You will probably need to do this if you take the experimental route in this problem set.

By simulating the random walk, we can identify these sets, and then check if each has low conduc-
tance. For example, let’s say that you wanted to find a set of low conductance near some particular
vertex v. You could try to do this by starting a random walk at v, and examining the sets St

k that
arise.

We can say something formal about this. First, recall from last lecture that if S is a set of
conductance φ and if p0 = πS is the initial distribution, then

pt(S) ≥ 1− tφ.
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We could also express this by letting χS be the characteristic vector of the set S. We could then
say

χT
Spt ≥ 1− tφ and χT

V−Spt ≤ tφ.

What if we instead start from one vertex of S, chosen according to πS?

Proposition 10.7.1. Let v be a vertex chosen from S with distribution πS. Then, with probability
at least 1/2,

χT
V−SŴ

t
χv ≤ 2tφ.

Proof. This follows from Markov’s inequality, as

E
v

[
χT
V−SŴ

t
χv

]
= χT

V−SŴ
t
πS .

So, we know that if we start the walk from most vertices of S, then most of its mass stays inside
S. Let’s see what this says about the curve Ct. For concreteness, let’s consider the case when

π(S) ≤ 1/4 and t = φ/4.

We then know that with probability at least 1/2 over the choice of v,

pt(S) ≥ 1− 2tφ = 1/2.

Question Can you say anything better than this?

Now, let θ be the lowest conductance among the sets St
k that we find during the walk. By Theo-

rem 10.6.6, we have

1/4 ≤ pt(S)− π(S)

≤
√
d(S) exp

(
−1

8
tθ2
)

≤
√
m/2 exp

(
−1

8
tθ2
)
.

Taking logs and rearranging terms, this gives

θ ≤
√

8 ln 2
√
n/2/t =

√
32 ln 2

√
n/2

√
φ.

So, we find a set whose conductance is a little more than the square root of the conductance of φ.

With a little more work, one can show that there is a set St
k that satisfies a similar guarantee and

lies mostly inside S. So, starting from a random vertex inside a set of small conductance, we can
find a set of small conductance lying mostly inside that set.
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You are probably now asking whether we can find that set. One obstacle is that S might contain
very small sets of low conductance within itself, and we might find one of these instead. Other
obstacles come from computational hardness. It turns out to be NP-hard to find sets of minimum
conductance. It is also computationall hard to find sets of approximate minimum conductance.

But, it is still a very reasonable to improve upon this result. OK, there are even some improvements
(which I’ll eventually work into the notes). But, so far none improve on this

√
φ term. I do not yet

know a really good reason that we should not be able to find a small set of conductance at most
O(φ log n). (although some think this could be hard too, need a reference)
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