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13.1 Overview

We will examine physical metaphors for graphs. We begin with a spring model and then discuss
resistor networks.

13.2 Review: Interpolation on a graph

Say we have a graph G = (V,E), a special set of vertices W , and some labels l : W → IR whose
values we only know at W . We would like guess the labels at the remaining vertices V −W . We
use the vector x to denote the labels that we guess. For u ∈ W we require x (u) = l(u), and for
u ∈ V −W we require that

x (u) =
1

d(u)

∑
(u,w)∈E

x (w). (13.1)

In the previous lecture, we saw that this problem has a solution. Today, we will continue to study
this inference problem using two different physical metaphors.

To begin, imagine that every edge is a rubber band (or spring), and that every vertex is a little ring
to which all its edge rubber bands are connected. For each vertex v ∈W , we nail the corresponding
ring down onto the real line at l(v). We could let the other rings settle into position, and guess
that x (u) is the location of ring u. Hey, why not?

13.3 Hooke’s Law

We can use Hooke’s law to figure out where all the rings in V −W should wind up. Assume that
each rubber band is an ideal spring with spring constant 1. Actually, if you have weights on the
edges, you could make these the spring constants. If a rubber band connects vertices u and v, then
Hooke’s law tells us that the force it exerts at node u is in the direction of v and is proportional
to the distance between u and v. Let x (u) be the position of each vertex u. Then the force the
rubber band between u and v exerts on u is That is,

x (v)− x (u).

13-1
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In a stable configuration, all of the vertices that have not been nailed down must experience a zero
net force. That is∑
v:(u,v)∈E

x (v)− x (u) = 0 =⇒
∑

v:(u,v)∈E

x (v) = d(u)x (u). =⇒ 1

d(u)

∑
v:(u,v)∈E

x (v) = x (u).

So, each vertex that is not nailed down is the average of its neighbors, same as the requirements
given by equations (13.1). Consequently, our spring-based inference is exactly equivalent to the
inference problem we defined last time.

In the weighted case, we would have for each u ∈ V −W

1

d(u)

∑
v:(u,v)∈E

wu,vx (v) = x (u), (13.2)

where here we define
d(u) =

∑
v:(u,v)∈E

wu,v

to be the weighted degree of node u.

A function x that satisfies these equations for each vertex u ∈ V −W is said to be harmonic on
V −W .

Recall, last time we showed that a solution to these equations exists when edges have equal weight,
by setting up a random walk on the graph. We can use the same approach to show that a solution
exists when we have arbitrary positive edge weights, by using a random walk which transitions
from its current vertex position u to each neighbor v with probability wu,v/d(u).

13.4 Energy

Physics also tells us that the nodes will settle into a position that locally minimizes the potential
energy. The potential energy of an ideal linear spring with constant w when stretched to length l
is

1

2
wl2.

So, the potential energy in a configuration x is given by

E (x )
def
=

1

2

∑
(u,v)∈E

wu,v(x (u)− x (v))2. (13.3)

Note that the energy always has to be at least 0. For any x that locally minimizes the energy,
the partial derivative of the energy with respect to each variable must be zero. In this case, the
variables are x (u) for u ∈ V −W . The partial derivative with respect to x (u) is

1

2

∑
v:(u,v)∈E

wu,v2(x (u)− x (v)) =
∑

v:(u,v)∈E

wu,v(x (u)− x (v)).
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Setting this to zero gives (13.2). Thus, a local minimum of the energy is a solution to the harmonic
equations on V −W , and conversely, if we have a solution to (13.2), then this gives a local minimum
of the potential energy.

We know that equations (13.2) have at least one solution. In a few moments, we will see the
solution is in fact unique, provided the graph is connected and W is not empty.

Theorem 13.4.1. If G is a connected graph with all edges weights positive and |W | ≥ 1, then the
minimizer of (13.3) is unique.

To prove this theorem, we will first show the following lemma:

Lemma 13.4.2. Consider any graph G = (V,E), W ⊆ V , and labels l : W → IR. Suppose x and
y are both vectors in IRV that agree with l on W , and that x is a local minimizer of (13.3) over
this set. If E (y) ≤ E (x ), then for all (u, v) ∈ E

x (u)− x (v) = y(u)− y(v)

Proof. For each (u, v) ∈ E, let us define auv = x (u)− x (v) and buv = y(u)− y(v). For 0 ≤ ε ≤ 1
we also define

x ε
def
= (1− ε)x + εy .

The point x ε still takes the correct values on nodes in W . If we consider small enough ε > 0, then
since x is a local minimum, we must have

E (x ) ≤ E (x ε) . (13.4)

Now, suppose for a contradiction that there exists an edge (s, t) ∈ E s.t. ast 6= bst. Observe the
following identity, which holds for all a, b ∈ IR and 0 ≤ ε ≤ 1.

(1− ε)a2 + εb2 − ((1− ε)a+ εb)2 = ε(1− ε)(a− b)2.

Using this identity, we see that

E (x)− E (x ε) ≥ (1− ε)E (x) + εE (y)− E (x ε) =
∑

(u,v)∈E

ε(1− ε)(auv − buv)2 ≥ ε(1− ε)(ast − bst)2

But if ε > 0, this means E (x ) − E (x ε) > 0, and hence (13.4) is false for all small ε > 0. This
contradicts our starting assumption that x is a local minimum. Thus ast = bst for all (u, v) ∈ E.

Proof of theorem 13.4.1. We know a local minimizer of (13.3) exists. Denote this by x . If E (y) ≤
E (x ) for some y , then lemma 13.4 tells us x and y have the same difference across all edges. Since
W is non-empty, there exists a vertex u ∈ W where x and y take the same value. We can show
that x and y agree on all vertices within distance 1 of w, then on all vertices within distance 2,
etc. by induction. Since the graph is connected, we eventually get that y = x . Thus all other
points have energy strictly greater than E (x ). Since this is true for all local minimizers, the local
minimizer must be unique, and is also a global minimizer.
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13.5 Resistor Networks

Given a graph, we can treat each edge as a resistor. If the graph is unweighted, we will assume that
the resistor has resistance 1. If an edge e has weight w(e), we will give the corresponding resistor
resistance r(e) = 1/w(e). The reason is that when the weight of an edge is very small, the edge is
barely there, so it should correspond to very high resistance. Having no edge corresponds to having
a resistor of infinite resistance.

The first equation I recall is
V = IR,

which says that the potential drop across a resistor is equal to the current flowing over the resistor
times the resistance. To apply this in a graph, we will define for each edge (a, b) the current flowing
from a to b to be i(a, b). As this is a directed quantity, we define

i(b, a) = −i(a, b).

I now let v ∈ IRV be the vector of potentials at vertices. Given these potentials (voltages), we can
figure out how much current flows on each edge by the formula:

i(a, b) =
1

ra,b
(v(a)− v(b)) = wa,b (v(a)− v(b)) .

I would now like to write this equation in matrix form. The one complication is that each edge
comes up twice in i . So, to treat i as a vector I will have each edge show up exactly once as (a, b)
when a < b. I now define the signed edge-vertex adjacency matrix of the graph U to be the matrix
with rows indexed by edges, columns indexed by vertices, such that

U ((a, b), c) =


1 if a = c

−1 if b = c

0 otherwise.

Define W to be the diagonal matrix with rows and columns indexed by edges and the weights of
edges on the diagonals. We then have

i = WUv .

Also recall that resistor networks cannot hold current. So, all the flow entering a vertex a from
edges in the graph must exit a to an external source. Let i ext ∈ IRV denote the external currents,
where i ext(a) is the amount of current entering the graph through node a. We then have

i ext(a) =
∑

b:(a,b)∈E

i(a, b).

In matrix form, this becomes
i ext = U T i = U TWUv . (13.5)

The matrix
L

def
= U TWU
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will play a very important role in the study of resistor networks. It is called the Laplacian matrix
of the graph.

To better understand the Laplacian matrix, let’s compute one of its rows. We will do this using
the equations we already have:

i ext(a) =
∑

b:(a,b)∈E

i(a, b)

=
∑

b:(a,b)∈E

1

rab
(v(a)− v(b))

=
∑

b:(a,b)∈E

wab(v(a)− v(b))

= d(a)v(a)−
∑

b:(a,b)∈E

wabv(b).

This gives us the following expression of the entries of L:

L(a, b) =


d(a) if a = b

−wa,b if (a, b) ∈ E
0 otherwise.

In matrix form, we see that L may be expressed as

L = D −A,

where D is the diagonal matrix of weighted degrees and A is the weighted adjacency matrix.

13.6 Energy dissipation

Recall (from physics) that the energy dissipated in a resistor network with currents i is

E (i)
def
=

1

2

∑
(a,b)∈E

i(a, b)2ra,b =
1

2

∑
(a,b)∈E

1

ra,b
(v(a)− v(b))2 =

1

2

∑
(a,b)∈E

wa,b(v(a)− v(b))2.

This expression should look familiar. Remember for later that it can never be negative.

Let’s see that we can express this in terms of the Laplacian as well. Recall that Uv is a vector
that gives the potential drop accross every edge. So,

(Uv)T (Uv)

is the sum of the squares of the potential drops accross all the edges. This is almost the expression
that we want. We just need to get in the weights. We do this in one of the following ways:

E (i) = (W 1/2Uv)T (W 1/2Uv) = (Uv)TW (Uv) = vTUWUv = vTLv .

Let me mention some useful spectral properties of the Laplacian.
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Theorem 13.6.1. The Laplacian matrix of a graph is a positive semi-definite graph. If the graph
is connected then the nullspace of its Laplacian is spanned by the constant vector.

Proof. If λ is an eigenvalue L with eigenvector v , the for the current i = WUv , we have

0 ≤ E (i) = vTLv = λvTv = λ ‖v‖2 .

So, λ ≥ 0. It is clear from all of these definitions that L1 = 0. The proof that 1 actuall spans the
nullspace is completely analogous to the proof that the eigenvalue of a walk matrix has multiplicity
1.

13.7 Fixing Potentials

We usually don’t think of injecting current into a circuit. Rather, we usually attach nodes of a
circuit to the terminals of a battery, which induce fixed potentials. Typically, we just attach two
vertices to the terminals. Let’s call them s and t, and assume that s has been attached to a terminal
of potential 1 and that t has been attached to a terminal of potential 0. That is, v(s) = 1 and
v(t) = 0. Then, the potentials all the remaining vertices can be determined by observing that for
x 6∈ {s, t}, i ext(x) = 0 and applying (13.2) to show

d(x)v(x) =
∑

y:(x,y)∈E

v(y)w(x, y). (13.6)

Thus, we get another system of linear equations, with boundary conditions fixing the individual
variables at s and t. We could also use linear algebra to prove that these equations have a solution.
I’ll give you a break and use probability instead. We will first show that the equations have a
solution, and then prove that it is unique.

13.8 Solving for voltages

We now observe that we can always solve equation (13.5) for v , provided that

1T i ext = 0 (13.7)

and the underlying graph is connected. Typically, equations like

Lv = i ext (13.8)

are solvable, except when the matrix is degenerate. Unfortunately, L does have determinant zero,
and so is not necessarily invertible.

But, we know a lot about L: its nullspace is spanned by 1. Equation (13.7) tells us that i ext is
orthogonal to the nullspace of L, and so, because L is symmetric, i ext is in the range of L. So,
we can solve (13.5) by just inverting L on its range–which is the space orthogonal to its nullspace.
This will provide us with a solution v that is also orthogonal to the nullspace.
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Here’s a more explicit way of constructing the solution. Let 0 = γ1 < γ2 ≤ · · · ≤ γn be the
eigenvalues of L and let 1 = u1, . . . ,un be a corresponding orthonormal basis of eigenvectors. We
have

i ext =
n∑
i=1

u i
(
uTi i ext

)
.

As (
uT1 i ext

)
= 0,

we can simplify this to

i ext =
n∑
i=2

u i
(
uTi i ext

)
.

So, we can just set

v =
n∑
i=2

u i
(
uTi i ext

)
/γi.

This will be a solution to (13.8) because

Lv = L
n∑
i=2

u i
(
uTi i ext

)
/γi

=

n∑
i=2

γiu i
(
uTi i ext

)
/γi

=

n∑
i=2

u i
(
uTi i ext

)
= i ext.

The bottom line is that the conventional wisdom that “one can only solve a system of linear
equations if the matrix is invertible” is just too pessimistic. The more optimistic approach that
we have taken here is to solve the system by multiplying by the pseudo-inverse instead of the
inverse. Since you may find it useful later in life, let me say that the pseudo-inverse of a symmetric
matrix is just the inverse on the range of the matrix. For a matrix with eigenvalues γ1, . . . , γn and
corresponding eigenvectors u1, . . . ,un, it is given by

L+ def
=
∑
i:γi 6=0

γ−1i u iu
T
i .


