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The Price of Anarchy

Daniel A. Spielman October 17, 2013

15.1 Disclaimer

These notes are not necessarily an accurate representation of what happened in class. They are
a combination of what I intended to say with what I think I said. They have not been carefully
edited.

15.2 Overview

We state more precisely exactly what we mean by social optima and Nash equilibria. We then show
that Pigou’s and Braess’s examples are essentially worst cases: with linear cost functions the cost
of counterintuitive effects is at most 4/3. This material comes from the work of Roughgarden and
Tardos [RT02].

15.3 Road Networks

We will consider traffic flow in an idealization of road networks. We view a road network as a
directed graph. In our model, the time that it takes to traverse a road will be a function of the
number of cars using that road. The more cars, the higher the traffic. In this lecture, we will
assume that the time it takes to traverse a road is a linear function of the form

af + b,

where f is the traffic on the road, and a, b ≥ 0.

In fact, it suffices to just consider roads with cost functions like ax or b, as we can make a more
general road by just putting these two end-to-end.

We view a road network as a directed graph G = (V,E). For each edge e we define the cost function
of road e to be ce(f) = aef+be. Our road network will have two distinguished vertices, s and t, and
we assume that all traffic wants to go from node s to node t. We assume that the total traffic is 1.
Traffic must be conserved (no crashes), so the amount of traffic entering each node must equal the
amount leaving. A traffic flow is any function f : E → IR≥0 that obeys this conservation condition
and sends one unit from s to t. Any given car will take one particular path P from s to t. The
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time taken by such a car will be the sum of the cost of all the edges on its path:

c(P )
def
=
∑
e∈P

ce(fe),

where fe is the flow on edge e.

15.4 Selfish (Nash) Routing

Assuming that everyone is greedy, everyone will try to take the path of least cost. Of course, this
might make that path slower. A natural question is what routing will result if everyone tries to
optimize for themselves. Such a routing is called a Nash equilibrium. In this situation the Nash
equilibrium is unique. But, we don’t know that yet.

Let the set of s-t paths be P1, . . . , Pk, and let αi be the fraction of the traffic that flows on path
Pi. In the Nash equilibrium, no car will go along a sub-optimal path. Assuming that each car has
a negligible impact on the traffic flow, this means that every path Pi that has non-zero flow must
have minimal cost. That is, for all i such that αi > 0 and all j

c(Pi) ≤ c(Pj).

An equivalent formulation is
c(Pj) > c(Pi) =⇒ αj = 0.

15.5 Flows and Paths

There are two natural ways to describe s-t flows: either by a function f that gives the amount of
flow on every edge in the network, or by giving the fractions α1, . . . , αk of flow that traverse each
s-t path in the network. We will switch between these two perspectives often in the lecture. Given
α1, . . . , αk, the flow is determined. However, there may be many ways of decomposing one flow
into fractions along each path. But, it will make no difference for our purposes.

15.6 Social optimum

Society in general cares more about the average time its takes to get from s to t. If we have a flow
that makes this average time low, everyone could rotate through all the routes and decrease the
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total time that they spend in traffic. So, the social cost of the flow f is

c(α1, . . . , αk)
def
=∑

i

αic(Pi) =
∑
i

αi

∑
e∈Pi

ce(fe)

=
∑
e

ce(fe)
∑
i:e∈Pi

αi

=
∑
e

ce(fe)fe.

I recall that a function c(x) is convex if for all x1 and x2, and all 0 < t < 1

c(tx1 + (1− t)x2) ≤ tc(x1) + (1− t)c(x2).

For example, a linear function of the form

c(x) = bx

is convex. A function c(x) is strongly convex if the inequality above is strict whenever x1 6= x2. A
quadratic function with positive leading term, such as

ax2 + bx

is strongly convex.

Theorem 15.6.1. The social cost of a s-t flow is a convex function.

Proof. Recall that the social cost of a flow f is∑
e

ce(fe)fe =
∑
e

aef
2
e + befe.

This is a sum of convex function, and so it is convex.

Theorem 15.6.2. Let c(x) be a convex function (of one variable or many). Then, every local
minimum of c is a global minimum.

Proof. Let x1 be a global minimum of C. If x0 is a local minimum of c, the gradient of c at x0 is
zero in every direction. However, if c(x1) < c(x0), then the gradient in the direction x1 − x0 will
be negative: we have

c(x0 + ε(x1 − x0))− c(x0)
ε

≤ (1− ε)c(x0) + εc(x1)− c(x0)
ε

=
ε(c(x1)− c(x0))

ε
= c(x1)− c(x0) < 0.

Corollary 15.6.3. Let f0 and f1 be socially optimal flows. Then for all 0 < t < 1, the flow
tf0 + (1− t)f1 is socially optimal too. Moreover, for every edge e for which ae > 0, f0e = f1e .

Proof. The first part follows immediately from the previous two theorems. The second part follows
from the strict convexity of quadratics.
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15.7 Social optimum as Nash equilibrium

Theorem 15.7.1. Let G be a graph with edge costs given by ce(f) = aef + be. Let G̃ be the same
graph but with with edge costs given by

c̃e(f)
def
= 2aef + be.

Then, a flow is a social optimum for G if and only if it is a Nash equilibrium for G̃.

Proof. Let f be a socially optimal flow for G. It can be represented as having flow αi over path Pi

for some set of coefficients α1, . . . , αk. Well, there might be many such representations. We only
need to know that there is at least one. We will prove that for all i such that αi > 0 and for all j,

c̃(Pi) ≤ c̃(Pj),

which establishes the claimed result.

To see this, we will prove that if we shift a little bit of the flow from path i to path j. If we
decrease αi by ε and increase αj by ε, for small ε, then the change in the cost of the social optimum
approaches

ε

(
∂c(α1, . . . , αk)

∂αj
− ∂c(α1, . . . , αk)

∂αi

)
≥ 0,

as α1, . . . , αk is a social optimum.

So, for αi > 0, we know that for every j

∂c(α1, . . . , αk)

∂αj
≥ ∂c(α1, . . . , αk)

∂αi
.

Now, let’s compute those derivatives.

We have

∂c(α1, . . . , αk)

∂αj
=
∑
e

∂fece(fe)

∂αj

=
∑
e∈Pj

∂fece(fe)

∂αj

=
∑
e∈Pj

∂aef
2
e + befe
∂αj

=
∑
e∈Pj

∂aef
2
e + befe
∂fe

∂fe
∂αj

=
∑
e∈Pj

∂aef
2
e + befe
∂fe

(for e ∈ Pj)

=
∑
e∈Pj

2aefe + be

= c̃(Pj).
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Conversely, we see that if α is a Nash equilibrium for G̃ then it is a local social optimum. As local
social optima are also global social optimum, it must be one of those as well.

While I claimed the following corollary in class, I neglected to prove it.

Corollary 15.7.2. Every Nash equilibrium has the same social cost.

Proof. Follows from Theorem 15.7.1 and Corollary 15.6.3.

So, the cost of a Nash equilibrium is now well defined. Let Nash(G) denote the value of a Nash
equilibrium in G and let Opt(G) denote the value of the social optimum.

Theorem 15.7.3. Let G be a directed road network in which every edge e has a cost function of
the form ce(fe) = aefe + be, with ae, be ≥ 0. Let f be any Nash flow in G. Then

c(f) ≤ 4

3
Opt(G).

Proof. The key to the proof is the construction of another road network Ĝ that has the same
vertices as G, all the edges of G, and an additional set of edges. Let f be a Nash flow for G. Our
construction of Ĝ will depend upon f . For each edge e ∈ G, Ĝ contains both e and another edge ê
that has the same endpoints as e, but the cost function

cê(x)
def
= ce(fe).

That is, the cost of edge ê is a constant function, and equals the cost of edge e under the Nash flow
f .

We now observe that f , when treated as a flow in Ĝ, is a Nash flow in Ĝ. The reason is that every
s-t path in Ĝ will consist of a combination of both original and hatted edges. For each of the hatted
edges ê, there is an original edge e that has the same cost under f . So, there is no s-t path in Ĝ
that has a lower cost than the paths being used in the flow f .

We will now construct an optimal flow in Ĝ, which we will call g. This flow g will make equal use
of each of the original and the hatted edges. That is, for every e

ge =
1

2
fe and gê =

1

2
fe.

To show that g is an optimal flow in Ĝ, we will construct a graph G̃ that has the same edges as Ĝ,
but costs

c̃e(x) = 2aex+ be and c̃ê(x) = ce(fe).

By Theorem 15.7.1, g is an optimal flow in Ĝ if and only if it is a Nash flow in G̃. To show that g
is a Nash flow in G̃, observe that

c̃e(ge) = 2ae(fe/2) + be = ce(fe), and

c̃ê(gê) == ce(fe).
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So, g is a Nash flow in G̃ precisely because f is a Nash flow in G.

Now that we know both a Nash flow and an optimal flow in Ĝ, we can show

3

4
Nash(Ĝ) ≤ Opt(Ĝ).

This follows from

Nash(Ĝ) =
∑
e

fece(fe) +
∑
e

fêcê(fê)

=
∑
e

fece(fe)

=
∑
e

aef
2
e + befe,

and

Opt(Ĝ) =
∑
e

gece(ge) +
∑
e

gêcê(gê)

=
∑
e

fe
2
ce(

fe
2

) +
fe
2
cê(

fe
2

)

=
∑
e

fe
2

(ae
fe
2

+ be) +
fe
2

(aefe + be)

=
∑
e

3

4
aef

2
e + febe

≥ 3

4

∑
e

aef
2
e + febe

=
3

4
Nash(Ĝ).

To finish the proof, observe that Nash(G) = Nash(Ĝ) and, as Ĝ has every edge that G does,

Opt(Ĝ) ≤ Opt(G).

15.8 Bounding Braess’s Paradox

In the previous lecture, I showed how to use Theorem 15.7.3 to bound the effect of Braess’s paradox.
I’ll now do that formally.

Theorem 15.8.1. Let G be a road network and let Ĝ be a road network obtained by adding roads
to G. Then

Nash(Ĝ) ≤ 4

3
Nash(G).
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Proof.

Nash(G) ≥ Opt(G) ≥ Opt(Ĝ) ≥ 3

4
Nash(Ĝ).
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