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Dynamic and Nonlinear Networks

Daniel A. Spielman October 22, 2013

16.1 Disclaimer

These notes are not necessarily an accurate representation of what happened in class. They are
a combination of what I intended to say with what I think I said. They have not been carefully
edited.

16.2 Overview

In this lecture we will consider two generalizations of resistor networks: resistor networks with non-
linear resistors and networks whose resistances change over time. While they were introduced over
50 years ago, non-linear resistor networks seem to have been recently rediscovered in the Machine
Learning community. We will discuss how they can be used to improve the technique we learned
in Lecture 13 for semi-supervised learning.

The material on time-varying networks that I will present comes from Cameron Musco’s senior
thesis from 2012.

16.3 Non-Linear Networks

A non-linear resistor network, as defined by Duffin [Duf47], is a like an ordinary resistor network
but the resistances depend on the potential differences across them. In fact, it might be easier
not to talk about resistances, and just say that the amount of flow across an edge increases as the
potential difference across the edge does. For every resistor e, there is a function

φe(v)

that gives the flow over resistor e when there is a potential difference of v between its terminals.

We will restrict our attention to functions φ that are

a. continuous,

b. monotone increasing,

c. symmetric, by which I mean φe(−v) = −φe(v).
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Note that condition c implies that φe(0) = 0. For an ordinary resistor of resistance r, we have

φe(v) = v/r.

However, we can and will consider more interesting functions.

If the graph is connected and we fix the voltages at some of the vertices, then there exists a
setting of voltages at the other vertices that results in a flow satisfying flow-in equals flow-out at
all non-boundary vertices. Moreover, this flow is unique.

We will prove this in the next section through the use of a generalization of energy dissipation.

16.4 Energy

We define the energy dissipation of an edge that has a potential difference of v to be

Φe(v)
def
=

∫ v

0
φe(t)dt.

We will show that the setting of the voltages that minimizes the total energy provides the flow I
claimed exists.

In the case of linear resistors, where φe(v) = v/r,

Φe(v) =
1

2

v2

r
,

which is exactly the energy function we introduced in Lecture 13.

The conditions on φe imply that

d. Φe is strictly convex1,

e. Φe(0) = 0, and

f. Φe(−x) = Φe(x).

We remark that a function that is strictly convex has a unique minimum, and that a sum of strictly
convex functions is strictly convex.

Theorem 16.4.1. Let G = (V,E) be a non-linear resistor network with functions fe satisfying
conditions a, b and c for every e ∈ E. For every set S ⊆ V and fixed voltages wa for a ∈ S, there
exists a setting of voltages va for a 6∈ S that result in a flow of current that satisfies the flow-in
equals flow-out conditions at every a 6∈ S. Moreover, these voltages are unique.

1That is, for all x 6= y and all 0 < λ < 1, Φe(λx+ (1− λ)y) ≤ λΦe(x) + (1− λ)Φe(y).
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Proof. For a vector of voltages v, define

Φ(v) =
∑

(a,b)∈E

Φ(a,b)(va − vb).

As each of the functions Φ(a,b) are strictly convex, Φ is as well. So, Φ has a minimum subject to
the fixed voltages. At this minimum point, we know that for every a 6∈ S

0 =
∂Φ(v)

∂va

=
∑

b:(a,b)∈E

∂Φ(a,b)(va − vb)
∂va

=
∑

b:(a,b)∈E

φ(a,b)(va − vb).

We may now set
f(a,b) = φ(a,b)(va − vb).

This is a valid flow because for every vertex a 6∈ S the sum of the flows out of va, taken with
appropriate signs, is zero.

Conversely, for any setting of voltages that results in a flow that has no loss or gain at any a 6∈ S,
we can reverse the above equalities to show that the partial derivatives of Φ(v) are zero. As Φ(v)
is strictly convex, this can only happen at the unique minimum of Φ(v).

16.5 Uses in Semi-Supervised Learning

In Lecture 13, I suggested an approach to estimating a function f on the vertices of a graph given
its values at a set S ⊆ V :

min
x:f(a)=x(a) for a∈S

∑
(a,b)∈E

(x(a)− x(b))2.

Moreover, we saw that we can minimize such a function by solving a system of linear equations.

Unfortunately, there are situtations in which this approach does not work very well. In general,
this should not be surprising: sometimes the problem is just unsolvable. But, there are cases in
which it would be reasonable to solve the learning problem in which this approach fails.

Better results are sometimes obtained by modifying the penalty function. For example, Bridle and
Zhu [BZ13] (and, essentially, Herbster and Guy [HL09]) suggest

min
x:f(a)=x(a) for a∈S

∑
(a,b)∈E

|x(a)− x(b)|p ,

for 1 < p < 2.

While a well-selected p will often improve accuracy, the drawback of this approach is that we cannot
perform the minimization nearly as quickly as we can when p = 2.
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16.6 Dual Energy

We can establish a corresponding, although different, energy for the flows. Let ψ be the inverse of
φ. We then define the flow-energy of an edge that carries a flow of f to be

Ψ(f)
def
=

∫ f

0
ψ(t)dt.

If we minimize the sum of the flow-energies over the space of flows, we again recover the unique
valid flow in the network. (The function Φ is implicit in the work of Duffin. The dual Ψ comes
from Millar [Mil51]).

In the classical case, Φ and Ψ are the same. While they are not the same here, their sum is. We
will later prove that when v = ψ(f),

Ψ(f) + Φ(v) = fv.

In fact, one can show that for all f and v,

Ψ(f) + Φ(v) ≥ fv,

with equality only when v = ψ(f).

Theorem 16.6.1. Under the conditions of Theorem 16.4.1, let fext be the vector of external flows
resulting from the induced voltages. Let f be the flow on the edges that is compatible with fext and
that minimizes

Ψ(f)
def
=

∑
(a,b)∈E

Ψ(a,b)(f(a,b)).

Then, f is the flow induced by the voltages shown to exist in Theorem 16.4.1.

Sketch. We first show that f is a potential flow. That is, that there exist voltages v so that for
every edge (a, b), f(a,b) = φ(a,b)(va − vb). The theorem then follows by the uniqueness established
in Theorem 16.4.1.

To prove that f is a potential flow, we consider the potential difference that the flow “wants” to
induce on each edge, ψ(f(a,b)). There exist vertex potentials that agree with these desired potential
differences if an only if for every pair of vertices and for every pair of paths between them, the sum
of the desired potential differences along the edges in the paths is the same. To see this, arbitrarily
fix the potential of one vertex, such as s. We may then set the potential of any other vertex a by
summing the desired potential differences along the edges in any path from s.

Equivalenty, the desired potential differences are realizable if and only if the sum of these desired
potential differences is zero around every cycle. To show that this is the case, we use the minimality
of the flow. Because Ψ(f) is strictly convex, small changes to the optimum have a negligible effect
on its value (that is, the first derivative is zero). So, pushing an ε amount of flow around any cycle
will not change the value of Ψ(f). That is, the sum of the derivatives around any cycle will be
zero. As

∂

∂f
Ψe(f) = ψe(f),

this means that the sum of the desired potential differences around every cycle is zero.



Lecture 16: October 22, 2013 16-5

Theorem 16.6.2. If f = φ(v), then

Φ(v) + Ψ(f) = vf.

Proof. One can prove this theorem through “integration by parts”. But, I prefer a picture. In the
following two figures, the curve is the plot of φ. In the first figure, the shaded region is the integral
of φ between 0 and v (2 in this case). In the second figure, the shaded region is the integral of ψ
between 0 and φ(v) (just turn the picture on its side). It is clear that these are complementary
parts of the rectangle between the axes and the point (v, φ(v)).
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The bottom line is that almost all of the classical theory can be carried over to nonlinear networks.

16.7 Thermistor Networks

We now turn our attention to networks of resistors whose resistance changes over time. We consider
a natural model in which edges get “worn out”: as they carry more flow their resistance increases.
One physical model that does this is a thermistor. A thermistor is a resistor whose resistance
increases with its temperature. These are used in thermostats.
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Remember the “energy dissipation” of a resistor? The energy dissipates as heat. So, the temper-
ature of resistor increases as its resistance times the square of the flow through it. To prevent the
temperatures of the resistors from going to infinity, we will assume that there is an ambient tem-
perature TA, and that they tend to the ambient temperature. I will denote by Te the temperature
of resistor e, and I will assume that there is a constant αe for each resistor so that its resistance

re = αeTe. (16.1)

We do not allow temperatures to be negative.

Now, assume that we would like to either flow a current between two vertices s and t, or that we
have fixed the potentials of s and t. Given the temperature of every resistor at some moment,
we can compute all their resistances, and then compute the resulting electrical flow as we did in
Lecture 13. Let fe be the resulting flow on resistor e. The temperature of e will increase by ref

2
e ,

and it will also increase in proportion to the difference between its present temperature and the
ambient temperature.

This gives us the following differential equation for the change in the temperature of a resistor:

∂Te
∂t

= ref
2
e − (Te − TA). (16.2)

Ok, there should probably be some constant multiplying the (Te − TA) term. But, since I haven’t
specified the units of temperature we can just assume that the constant is 1.

By substituting in (16.1) we can eliminate the references to resistance. We thus obtain

∂Te
∂t

= αeTef
2
e − (Te − TA).

There are now two natural questions to ask: does the system converge, and if so, what does it
converge to? If we choose to impose a current flow between s and t, the system does not need to
converge. For example, consider just one resistor e between vertices s and t with αe = 2. We then
find

∂Te
∂t

= αeTef
2
e − (Te − TA) = 2Te − (Te − TA) = Te + TA.

So, the temperature of the resistor will go to infinity.

For this reason, I prefer to just fix the voltages of certain vertices. Under these conditions, we can
prove that the system will converge. While I do not have time to prove this, we can examine what
it will converge to.

If the system converges, that is if the voltages at the nodes converge along with the potential drops
and flows across edges, then

0 =
∂Te
∂t

= αeTef
2
e − (Te − TA).

To turn this into a relationship between fe and ve, we apply the identity fere = ve, which becomes
feαeTe = ve, to obtain

0 = vefe − Te + TA.
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To eliminate the last occurence of Te, we then multiply by fe and apply the same identity to produce

0 = vef
2
e − ve/αe + feTA.

The solutions of this equation in fe are given by

fe = ±

√
1

αe
+

(
TA
2ve

)2

− TA
2ve

.

The correct choice of sign is the one that gives this the same sign as ve:

fe =
1

2ve

√(2ve)2

αe
+ T 2

A − TA

 . (16.3)

When ve is small this approaches zero, so we define it to be zero when ve is zero. As ve becomes

large this expression approaches α
−1/2
e . Similarly, when ve becomes very negative, this approaches

−α−1/2e . If we now define

φe(ve) =
1

2ve

√(2ve)2

αe
+ T 2

A − TA

 ,

we see that this function satisfies properties a, b and c. Theorem 16.4.1 then tells us that a stable
solution exists.

16.8 Low Temperatures

We now observe that when the ambient temperature is low, a thermistor network produces a
minimum s-t cut in a graph. The weights of the edges in the graph are related to αe. For simplicity,
we will just examine the case when all αe = 1. If we take the limit as TA approaches zero, then the
behavior of φe is

φe(ve) =


0 if ve = 0

1 if ve > 0

−1 if ve < 0.

We will obtain similar behavior for small TA: if there is a non-negligible potential drop across an
edge, then the flow on that edge will be near 1. So, every edge will either have a flow near 1 or a
negligible potential drop. When an edge has a flow near 1, its energy will be near 1. On the other
hand, the energy of edges with negligible potential drop will be near 0.

So, in the limit of small temperatures, the energy minimization problem becomes

min
v:v(s)=0,v(t)=1

∑
(a,b)∈E

|v(a)− v(b)| .

One can show that the minimum is achieved when all of the voltages are 0 or 1, in which case the
energy is the number of edges going between voltage 0 and 1. That is, the minimum is achieved by
a minimum s-t cut.
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