
Graphs and Networks Lecture 18

PageRank and Random Walks on Directed Graphs

Daniel A. Spielman October 31, 2013

18.1 Overview

In this lecture, we will study random walks on directed graphs. This is the basis of Google’s
PageRank algorithm [?]. I remark that the idea for this algorithm was previously developed by
Bonachic [?] and that a related algorithm was developed at the same time by Kleinberg [?].

We begin this lecture with the general theory of random walks on directed graphs. We conclude by
examine some of the ways in which random walks on directed graphs can behave very differently
from random walks on undirected graphs, and by explaining some of the advantages of PageRank.

The objective of the PageRank algorithm is to assign a measure of importance or authority to every
web page. There is a good story to justify its measure. However, should we believe it? Well, those
who remember how well Google performed when it first came on-line will consider this a strong
justification. We can view this as a big experiment justifying the performance of PageRank. But,
I presume that social scientists also found some way of justifying it before then.

In the next lecture we will see a very different approach to justifying PageRank though axioms.
We will see that PageRank can be uniquely characterized as the ranking satisfying some pretty
reasonable axioms.

18.2 PageRank

The idea of PageRank is that we want to assign some measure of importance to every web page.
We will view links from one page to another as endorsements. So, once we have decided that one
page is important, we will believe that each of the pages to which it points are important as well.
To limit the influence of any one page, we divide its votes for importance over its out-links.

To state this mathematically, we view the web as a directed graph G = (V,E), where (u, v) is an
edge of E if page u has a link to page v. The PageRank vector p should satisfy the requirement
that the rank of a page is the sum of the ranks of the pages that point to it, divided by their
degrees. That is,

p(v) =
∑

u:(u,v)∈E

p(u)/dout(u).

To write this using matrices, we will let A be the adjacency matrix of the directed graph. We define
this as follows:

A(v, u) = 1 if (u, v) ∈ E.

18-1
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Warning: My definition of A is the opposite of the one you would expect . When G has
an edge from u to v, I have put a 1 in column u and row v. This is because I am going to make p
be a column vector and multiply from the right.

Now, let dout(u) be the number of edges leaving a vertex u and let Dout be the diagonal matrix
with the out-degrees of nodes on the diagonal. We then set

Wout = AoutD
−1
out.

Then, p satisfies
p = Woutp.

So, p is an eigenvector of Wout of eigenvalue 1. We have seen this equation before. It tells us that
p is a stable distribution for the random walk on G in which we only follow out-links.

But, you may notice a problem: D−1out is not defined if some vertex has zero out-degree. There are
two ways to deal with this. The first is to make sure that there are no such vertices in your graph.
The second is to ignore them initially, compute the PageRank for every other vertex, and then
compute the ranks of those pages.

Now, the actual PageRank proposal is slightly different from this in a very useful way. There is
some probability α so that at every step the walk has an α probability of jumping to a uniformly
chosen random webpage. They tell us that α is set to some moderately small constant like 0.15.
This is equivalent to adding a low-weight edge between every pair of vertices. For now, let’s not
add those edges and instead view it as changing the equation to

p = α
1

n
1 + (1− α)Woutp.

As in our lecture on Personal PageRank, we can see that this gives a convenient formula for p:

p − (1− α)Woutp = α
1

n
1

(I − (1− α)Wout)p = α
1

n
1

p = α
1

n
(I − (1− α)Wout)

−11.

During this lecture we will show that the matrix in that last equation is in fact invertible, and so
the vector p is well-defined.

In particular, we will show that all eigenvalues of Wout are at most 1 in absolute value. This means
that, as in the lecture on Personal PageRank, we can express p as the sum of the infinite series:

p =
α

n

∑
t≥0

(1− α)tW t
out1.

For α not too small, the terms (1 − α)t shrink very quickly. Moreover, the sum of the entries in
each vector W t

out1 is always the same. So, the terms for large t will have very little contribution
to the sum.
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18.3 Random Walks on Directed Graphs : Components

We will now study in general directed graphs. At the end of the lecture we will see how the uniform
jump probability used in PageRank makes the walks much nicer.

First, let’s think about when a random walk is reasonable. For example, what if there is a vertex
with no outgoing edges? What would it mean to take a random step from that vertex? You could
interpret this to mean that the random walk dies whenever it hits such a vertex. In this case, such
vertices will suck the probability out of a walk. It is more convenient to either get rid of such
vertices, or to add a self-loop from such a vertex back to itself. In the latter case, probability will
accumulate at such a vertex.

If we want to have a unique stable distribution, then we should just get rid of such vertices. If we
had two different vertices whose only out-edges were self-loops, then a walk that starts at one of
these vertices will stay there. So, we would have at least two different stable distributions.

If we were to eliminate vertices with no out-edges, then we might wind up creating more vertices
with no out-edges, and so on. So, we would have to keep eliminating until no vertices with no
out-edges remained. Would the stable distribution now be unique?

Not necessarily. A graph with two different strongly-connected components could have more than
one stable distribution. Recall that a set of vertices S is strongly-connected if there is a path from
each vertex of S to every other vertex of S, using only vertices from S. The set S is a strongly-
connected component if it is a maximal strongly-connected set. That means that one cannot add
any set of vertices to S and still have a strongly-connected set. Let S1, . . . , Sk be the set of strongly
connected components of G, and let H be the directed graph on vertices {1, . . . , k} that contains
an edge between vertices i and j if there is an edge from a vertex of Si to an edge of Sj . Recall that
the graph H cannot have any cycles (otherwise we could merge the sets in the cycle together to
form a larger strongly-connected component). If H has two vertices with no out-edges, then G will
have at least two stable distributions. To see this, consider starting the walk at one of the vertices
in one of those strongly-connected components. As the component has no out-edges, the walk will
never leave.

What about the components corresponding to vertices in H with out-edges? It turns out that these
must have zero probability in the limit of a random walk. The reason is clear: probability mass
will continue to escape from the out-edge. Moreover, as the component is strongly-connected, all
probability mass in the component will eventually pass by a vertex containing an out-edge.

So, the only way we can have a unique stable distribution in which every vertex has non-zero
probability is if G is itself one big strongly-connected component. In this case, we say that G is
strongly-connected.

18.4 Eigenvalue 1

Lemma 18.4.1. If G has no vertices of out-degree 0, then 1 is an eigenvalue of W out.
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Proof. If G has no vertices of out-degree 0, then every column of Aout has at least one non-zero
entry. In fact, the uth column of Aout has dout(u) non-zero entries, so the uth column of AoutD

−1
out

has sum 1. This implies that
1TW out = 1T ,

and so W out has an eigenvector of eigenvalue 1.

This is one place where we must be careful. We now know that 1T is a left-eigenvector of W out.
As the set of left-eigenvalues and right-eigenvalues of a matrix are the same, we know that W out

also has a right-eigenvector of eigenvalue 1. This is the vector p that we are looking for. However,
we do not know any nice, simple formula for p!

Lemma 18.4.2. If G is strongly connected, then the eigenvalue 1 has multiplicity 1. In particular,
if

vTW out = vT ,

then we must have vT = c1 for some constant c.

The proof of this is similar to the proof in the undirected case, so we will skip it. I might put it on
a problem set.

Just as in the undirected case, the uniqueness of the eigenvector of eigenvalue 1 does not imply
that a random walk will necessarily converge to this eigenvalue. However, there can be fancier
obstructions in the directed case. Consider a directed cycle on k vertices. If we start the random
walk at one of these vertices, it will just keep jumping around the cycle. So, it will go through
the same configuration every k steps. Spectrally speaking, this is because such a graph has an
eigenvalue that is a k-th root of 1:

e2πi/k.

Of course, we could eliminate this issue by adding self-loops to every vertex (perhaps with small
weight), or edges from each vertex to every other vertex, as in PageRank.

I should also mention the following theorem, which we can also prove as we did in the undirected
case.

Theorem 18.4.3. Every eigenvalue of W out has absolute value at most 1.

This could also show up in a problem set.

18.5 A Positive Stable Distribution

We will now prove that a strongly connected graph has a stable distribution by showing that the
vector p for which

p = W outp (18.1)

must be all positive or all negative. We begin by showing that a solution that is all non-negative
must be all positive.



Lecture 18: October 31, 2013 18-5

To do this, we will consider the matrix

W ∗
out

def
=

1

n

n−1∑
i=0

W i
out.

We need to establish a few properties of W ∗
out.

Claim 18.5.1. If W outp = p, then W ∗
outp = p. Similarly, 1TW ∗

out = 1T .

Claim 18.5.2. The matrix W ∗
out has no negative or zero entries.

Proof. As W out is non-negative, it follows immediately that W ∗
out is non-negative. To show that

W ∗
out has no zero entries, note that W t

out(b, a) is equal to the probability that a random walk
starting at a hits b in exactly t time steps. As the graph is strongly connected, for every pair of
vertices a and b, there is some t less than n for which this probability is non-zero. As W ∗

out(b, a)
is the average of these probabilities for t between 0 and n, it is non-zero as well.

Lemma 18.5.3. If p satisfies (18.1) and p is non-negative, then p is strictly positive.

Proof. Assuming that p is not the all-zero vector, it has some positive entry. Assume, without loss
of generality, that p(1) > 0. As both p and W ∗

out are both non-negative,

p(j) =
∑
i

W ∗
out(j, i)p(i) ≥W ∗

out(j, 1)p(1) > 0.

We now prove that (18.1) has a non-negative solution.

Theorem 18.5.4. The equation W outp = p has a non-negative solution.

Proof. We will show that it has a solution in which all the signs are the same, which implies that
it has a non-negative solution (flip all signs if necessary). Assume by way of contradiction that p
is not sign-uniform. That is, that p has both positive and negative entries. We will use the fact
that if x is some vector with both positive and negative entries, then∣∣∣∣∣∑

u

x (u)

∣∣∣∣∣ <∑
u

|x (u)| .

From equation (18.1), we have that for all u,

p(u) =
∑
v

W ∗
out(u, v)p(v),

and so

|p(u)| =

∣∣∣∣∣∑
v

W ∗
out(u, v)p(v)

∣∣∣∣∣ .
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As we have assumed that p is not sign-uniform, and W ∗
out(u, v) is always positive, we have the

inequality ∣∣∣∣∣∑
v

W ∗
out(u, v)p(v)

∣∣∣∣∣ <∑
v

W ∗
out(u, v) |p(v)| ,

which implies

|p(u)| <
∑
v

W ∗
out(u, v) |p(v)| .

If we now sum over all u, we get∑
u

|p(u)| <
∑
u

∑
v

W ∗
out(u, v) |p(v)|

=
∑
v

∑
u

W ∗
out(u, v) |p(v)|

=
∑
v

|p(v)|
∑
u

W ∗
out(u, v)

=
∑
v

|p(v)| ,

as 1TW ∗
out = 1T is equivalent to ∑

u

W ∗
out(u, v) = 1.

From the assumption that p is not sign-uniform, we have derived a contradiction.

18.6 Warning about directed graphs

There are few important ways in which random walks on directed graphs differ from random walks
on undirected graphs. The first is that the spectral theory is different. An asymmetric matrix like
W out might not be diagonalizable. That is, it might not have n eigenvalues. So, spectral-type
analyses need to go through the Jordan normal form. Spectral-type analyses are also complicated
by the fact that the eigenvectors of such a matrix are usually not orthogonal.

The next warning is that the probabilities of vertices under the stable distribution can vary by
many orders of magnitude. For example, consider the graph on n vertices {1, . . . , n} with an edge
from vertex i to vertex i+1 for every 1 ≤ i < n, as well as an edge from every vertex i ≥ 2 pointing
back to vertex 1. If we start a random walk at vertex 1, it is very unlikely to reach vertex n. At
every node i, the chance that it makes it to node i+ 1 is only 1/2. Moreover, with probability 1/2
is jumps all the way back to node 1. From this argument, we can see that the probability of being
at node 1 is much much larger than the probability of being at node n.

This phenomenon can also be used to produce graphs in which the random walk is very slow to
converge to the stable distribution. To see this, let G1 and G2 be two different copies of the graph
that we just described. For each, call the vertex corresponding to vertex 1 the first node and call
the vertex corresponding to vertex n to last vertex. Now, add an edge from the last vertex of G1

to the first vertex of G2 and an edge from the last vertex of G2 to the first vertex of G1. This is a
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symmetrical construction. So, in the stable distribution the probabilities of corresponding nodes in
graphs G1 and G2 must be the same. But, if we start a random walk at the first node of G1, it will
take time exponential in n before the probability mass between the two parts begins to equalize.
To see this, note that the only mass that enters G2 does so through the last node of G1. But, the
probability that the random walk even reaches the last node of G1 in the first 2n−3 steps is at most
1/4.

Research Question: Can you find a fast algorithm for approximating the stable distribution of
the random walk on an arbitrary graph?

18.7 What PageRank Does

By adding in an α probability of jumping to a uniform random vertex, PageRank avoids many of
the problems of random walks on directed graphs. First, it ensures that the walk graph is strongly
connected. Second, it ensures that the probability of reaching every vertex is at least α/n, and so
is not too small.

Third, as we explained at the start, it provides a fast algorithm for approximating the PageRank
vector.


