
Graphs and Networks Lecture 21

Spectral Partitioning and Clustering

Daniel A. Spielman November 12, 2013

21.1 Overview

21.2 A useful identity

For real numbers x1, . . . , xn and µ = (1/n)
∑

i xi,

∑
i,j

(xi − xj)2 = 2n
∑
i

(xi − µ)2.

21.3 Spectral Relaxation of Modularity

I recall Newman’s modularity measure for a partition P = {C1, . . . , Ck} of a graph G:

Q =

k∑
j=1

(
e(Cj)−E [e(Cj)]

)
,

where e(Cj) is the number of edges internal to cluster Cj and E [e(Cj)] is the expected number of
such edges under a randomly re-wired model. Recall that

E [e(Cj)] =
d(Cj)

2

4m
,

where m is the number of edges in the graph and d(Cj) is the sum of the degrees of the vertices in
Cj .

We will now develop a way of expressing this with matrices and vectors. To begin, we could let y j

be the characteristic vector of set Cj . Then,

e(Cj) = (1/2)
∑

a,b∈Cj

Aa,b = (1/2)
∑

a,b:yj(a)=yj(b)=1

Aa,b = (1/2)yT
j Ay j .

where A is the adjacency matrix Similarly,

d(Cj) = dTy j ,

21-1

Lecture 21: November 12, 2013 21-2

where d is the vector of degrees of vertices. This gives

E [e(Cj)] =
1

4m
(dTy j)

2 =
1

4m
(yT

j d)(dTy j) =
1

4m
yT
j (ddT)y j ,

where we observe that ddT is a matrix.

So, we can now write the problem of maximizing modularity as that of maximizing

∑
j

yT
j

(
A

2
− ddT

4m

)
y j , (21.1)

over vectors y1, . . . ,yk in {0, 1}n that have disjoint support and sum to the all 1s vector. This
really doesn’t simplify the problem.

We can achieve some simplification if we want a partition into just two parts: we will get it down
to one vector. We let x be this vector, and set it to 1 for a ∈ C1 and −1 for a ∈ C2. Our instinct
is to measure

xT

(
A

2
− ddT

4m

)
x , (21.2)

and this works!

To see why, observe that (x (a)x (b) + 1)/2 equals 1 when a and b are in the same cluster, and 0
when they are in different clusters. So,

(21.1) =
∑
a≡P b

1

2
Aa,b −

1

4m
dad b

=
∑
a,b

1

2
Aa,b(x (a)x (b) + 1)/2− 1

4m
dad b(x (a)x (b) + 1)/2

=
1

4
xTAx +

1

4
1TA1− 1

8m
xT (ddT)x − 1

8m
1T (ddT)1.

As 1TA1 = 2m and 1d = 2m, this simplifies to

1

4
xT
(
A− (1/2m)(ddT)

)
x . (21.3)

Also, maximizing this over x ∈ {±1}n is still a hard problem.

21.4 Relaxation of Modularity

One of the great tricks of optimization is to attempt approximate the maximimum of (21.3) by
relaxing it. In this case, we do this by dropping the condition that x ∈ {±1}n, and replace it with
the condition that ‖x‖2 = n. We then obtain the problem of maximizing

xT
(
A− (1/2m)(ddT)

)
x

Lecture 21: November 12, 2013 21-3

over vectors x of a given norm. It turns out that the maximum will be achieved by the eigenvector
of largest eigenvalue of the matrix

A− (1/2m)(ddT).

For a proof of this, I recommend either looking in Newman’s book or page 6 of Lecture 1 from my
course on spectral graph theory.

There is then an obvious way to turn the eigenvector into two sets: we can take a prefix of the
values in the vector that gives the lowest modularity score. While this is a useful heuristic, we
unfortunately do not have any guarantees for how well it performs. We can, however, obtain
guarantees about the analogous procedure for minimizing conductance.

21.5 Relaxing Conductance and Sparsest Cut

For this lecture, I re-define the conductance of a cluster to be

Φ(C)
def
= m

|∂(C)|
d(C)d(V − C)

.

We will obtain a spectral approximation of this.

Actually, I will consider a simpler computation for the sparsity of a cut, which is defined to be

sp(C)
def
=

|∂(C)|
|C| |V − C|

.

If x is the characteristic vector of C, then

|C| |V − C| =
∑
a,b

(x (a)− x (b))2.

And,

|∂(C)| =
∑

(a,b)∈E

(x (a)− x (b))2 = xTLx ,

where L is the Laplacian matrix of the graph.

So, we want to minimize ∑
(a,b)∈E(x (a)− x (b))2∑

a,b(x (a)− x (b))2
(21.4)

over vectors x ∈ {0, 1}n. This is hard, so we will relax the problem by letting x range over all real
vectors.

To figure out which vector achieves the minimum, we simplify the denominator of this expression.
Using the identity I gave at the start of the lecture, we see that∑

a,b

(x (a)− x (b))2 = 2n
∑
a

(x (a)− µ)2,

Lecture 21: November 12, 2013 21-4

where µ is the average of the x (a). Note that neither the numerator nor the denominator of our
ratio is changed by shifting x . That is, we can force the average to be zero. We thereby learn that
the minimum of (21.4) is

min
x⊥1

xTLx

xTx
.

The vector that minimizes this is precisely the eigenvector of the second-smallest eigenvalue of L.
Recall that the smallest eigenvalue is 0 and has eigenvalue 1, which doesn’t tell us much.

If we wanted to do the same for minimizing conductance, we would take the left-eigenvector of
second-largest eigenvalue of the walk matrix:

AD−1.

As usual, we would partition the vertices by performing a sweep along this vector.

In this case, one of the great theorems of spectral graph theory, known as Cheeger’s inequality,
provides a guarantee on the conductance of the partition returned: it tells us that it is within a
quadratic factor of the optimum. That is, up to constants, its conductance is no worse than the
square root of the conductance of the optimal partition.

21.6 Clustering with many parts

To find a partition into many parts, it would be natural to use many eigenvectors. For the walk
matrix, this works reasonably well. People have been doing it for a long time (give references),
Cheeger’s inequality has recently been extended to prove that is works (give more references).
Let me explain one way to do this.

To begin, let x 2, . . . ,x k be the 2nd through kth (left) eigenvectors of the walk matrix. Recall that
the first eigenvector is the constant vector, which does not tell us much. These eigenvectors give us
(k− 1) coordinates for each vertex. For vertex a, create the vector va = (x 2(a), . . . ,x k(a)). When
we were partitioning into just 2 parts, this was just a point on the real line. Now, we have n points
in a (k − 1) dimensional space.

So, if we want to divide them into clusters, we could try to use some algorithm for clustering points
in space. This actually works reasonably well.

21.7 K-Means

Before we get too into how one should cluster the vertices of a graph, lets take a moment to consider
the seemingly easier problem of clustering vectors in IRd. Lets call the vectors x1, . . . , xn. One of
the most popular measures of the quality of a partition of these vectors into clusters C1, . . . , Ck is
the k-means objective function. It is

k∑
a=1

1

|Ca|
∑

i,j∈Ca

‖xi − xj‖2 . (21.5)

Lecture 21: November 12, 2013 21-5

This expression is simplified by setting µa to be the average of the points in cluster Ca:

µa =
1

|Ca|
∑
i∈Ca

xi.

We then have that (21.5) equals
k∑

a=1

∑
i∈Ca

‖xi − µa‖2 . (21.6)

That is, we sum the square of the distance of each point to the center of its cluster.

While it is NP-hard to find the clusters that minimize this objective function (even for k = 2),
there is a very popular heuristic called the k-means algorithm (introduced by Lloyd [Llo82]) for ap-
proximately minimizing the objective function. Before I tell you the algorithm, I’d like to complain
that many people don’t make the distincition between the objective function and the algorithm,
which is just careless.

Lloyd’s consists of alternating steps in which one computes the cluster-averages, µ1, . . . , µk, and
then shifts each point to the cluster with the closest center. That is, we alternate the steps

1. For each 1 ≤ a ≤ k, set µa = (1/ |Ca|)
∑

i∈Ca
xi.

2. For each 1 ≤ i ≤ n, put i in the cluster a for which ‖µa − xi‖ is lowest.

One can show that each of these steps will decrease the objective function. I didn’t say how to
start. Typically, one will choose k random data points and make them the cluster centers. A
better initialization is given by choosing the k points with probability inversely proportional the
the square of their distance from the previous points (k-means++ [AV07]).

One typically runs this algorithm until it stops making any changes. Then, one usually runs it again
and again with different random starts. It is not very consistent. But, it is easy to implement, so
people like to use it.

21.8 Drawing Graphs using Eigenvectors

It turns out that if you want to draw a graph, a good easy way to do it is to take the two vectors
v2 and v3, and locate vertex i as position

xi = (v2(i), v3(i)) .

To convince you of this, let me show you the pictures this gives of some simple graphs. To draw
the pictures, I will represent the edges as straight lines connecting the vertices.

To create my initial graph, I will choose 100 random points in the plane. I will then create a graph
on them by taking their Delaunay triangulation.

Lecture 21: November 12, 2013 21-6

>> [a,xy] = delGraph(100);

>> plot(xy(:,1),xy(:,2),’o’)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

>> hold on

>> gplot(a,xy)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Now, I’ll draw a picture of the graph using the first two non-trivial eigenvectors to obtain coordi-
nates.

>> lap = diag(sum(a)) - a;

>> di = diag(1./sum(a));

>> [V,D] = eig(di*lap);

>> [val,ord] = sort(diag(D));

>> W = V(:,ord(2:3));

>> figure(2)

>> gplot(a,W)

Lecture 21: November 12, 2013 21-7

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

I’d say that this gives a pretty good picture. Moreover, it is clear that if we run k-means on these
coordinates, we will get a reasonable clustering of the vertices. Let’s try it out. We’ll create three
clusters. I’ll first plot them over the spectral picture, and then in original space.

>> ide = kmeans(W,3);

>> figure(2)

>> hold on

>> plot(W(ide==1,1),W(ide==1,2),’o’)

>> plot(W(ide==2,1),W(ide==2,2),’rs’,’MarkerSize’,10)

>> plot(W(ide==3,1),W(ide==3,2),’g*’,’MarkerSize’,10)

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

And, here it is in the original space.

>> figure(1)

>> plot(xy(ide==1,1),xy(ide==1,2),’o’)

>> hold on

>> plot(xy(ide==2,1),xy(ide==2,2),’rx’)

>> plot(xy(ide==3,1),xy(ide==3,2),’g*’)

Lecture 21: November 12, 2013 21-8

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Of course, we could use a more direct method to cluster points in the plane. I am not advocating
using this method for that problem (although there are reasons to do something like this). Rather,
I’m just trying to do an example in which it is visually clear that we are getting a reasonable
answer.

Of course, I should compare this with using k-means on the adjacency matrix directly. Here is the
result, plotted in the xy space.

>> idx = kmeans(a,3);

>> figure(1)

>> clf

>> plot(xy(idx==1,1),xy(idx==1,2),’o’)

>> hold on

>> plot(xy(idx==2,1),xy(idx==2,2),’rs’)

>> plot(xy(idx==3,1),xy(idx==3,2),’g*’)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

It’s not so bad, but I don’t think it is as good as the spectral clustering.

Now, let’s see an example where using k-means directly does very poorly: on the grid graph. First,
here’s an image of this graph.

Lecture 21: November 12, 2013 21-9

>> [a,jnk,xy] = grid2(10,10);

>> figure(1)

>> clf

>> plot(xy(:,1),xy(:,2),’o’)

>> hold on

>> gplot(a,xy)

>> axis off

Let’s cluster it with k-means.

>> idx = kmeans(a,2);

>> clf

>> gplot(a,xy)

>> hold on; axis off

>> plot(xy(idx==1,1),xy(idx==1,2),’o’,’MarkerSize’,10)

>> plot(xy(idx==2,1),xy(idx==2,2),’rs’,’MarkerSize’,10)

I told you that k-means can do bad things on bipartite graphs.

Lecture 21: November 12, 2013 21-10

Spectral partitioning, using k-means on the eigenvectors, gives almost perfect results for this graph.
For overkill, I’ll partition it into 4 pieces.

>> lap = diag(sum(a)) - a;

>> di = diag(1./sum(a));

>> [V,D] = eig(di*lap);

>> [val,ord] = sort(diag(D));

>> W = V(:,ord(2:4));

>> ide = kmeans(W,4);

>> clf

>> gplot(a,xy); hold on; axis off

>> plot(xy(ide==1,1),xy(ide==1,2),’o’,’MarkerSize’,10)

>> plot(xy(ide==2,1),xy(ide==2,2),’rs’,’MarkerSize’,10)

>> plot(xy(ide==3,1),xy(ide==3,2),’g*’,’MarkerSize’,10)

>> plot(xy(ide==4,1),xy(ide==4,2),’kp’,’MarkerSize’,10)

21.9 Intrinsic Measures of Quality

We still need a way to measure the quality of a clustering. One way to start is to use a purely
graph-theoretic measure.

Shi and Malik [SM00] advocate for the normalized cut measure:∑
a

|∂(Ca)|
d(Ca)

,

where we recall that d(Ca) is the sum of the degrees of the vertices in Ca. In the case of two
clusters, this has the advantage of exactly coinciding with a measure of conductance:

|∂(C0)|
d(C0)

+
|∂(C1)|
d(C1)

=
|∂(C0)|
d(C0)

+
|∂(C0)|
d(C1)

= (d(C0) + d(C1))
|∂(C0)|

d(C0)d(C1)

= (d(V))
|∂(C0)|

d(C0)d(V − C0)
.

When I defined conductance I usually put the minimum in the denominator. But, it is common
to take the product instead. I note that Shi and Malik [SM00] introduced their spectral clustering
algorithm as a relaxation of the problem of minimizing the normalized cut objective function.

This is a variation of the k-way ratio cut measure introduced by Chan, Schlag and Zien [CSZ94]:

r(C1, . . . , Ck)
def
=
∑
a

|∂(Ca)|
|Ca|

.

Lecture 21: November 12, 2013 21-11

Chan, Schlag and Zien [CSZ94] also derive their spectral clustering algorithm as a relaxation of
this optimization problem.

In fact, Dhillon, Guan and Kulis [DGK04] have proved that there is a set of vectors that are
naturally associated with a graph so that one minimizes the above quantity by optimizing the
k-means objective function on those vertices. We get the vectors from the signed edge-vertex
adjacency matrix (from Lecture 12):1

U ((a, b), c) =

1 if a = c

−1 if b = c

0 otherwise.

This came up because the laplacian of an unweighted graph is given by

L = U TU .

We take the vector corresponding to vertex i to be the ith column of U .

The following result is proved by Dhillon, Guan and Kulis [DGK04].

Theorem 21.9.1. For each vertex i, let xi be the ith column of U . The clustering C1, . . . , Ck on
these vectors that minimizes the k-means objective function is also the clustering that minimizes

r(C1, . . . , Ck).

Proof. We first note that

xTi xj =

−1 if (i, j) ∈ E
di if i = j

0 otherwise.

So, for i 6= j,
‖xi − xj‖2 = di + dj − 21(i,j)∈E .

In the following, I let E(Ca) denote the set of edges between vertices in Ca, and recall that

d(Ca) = 2 |E(Ca)|+ |∂(Ca)| .

For a cluster Ca, ∑
(i,j)∈Ca

‖xi − xj‖2 = (|Ca| − 1)
∑
i

di + 2 |E(Ca)|

= |Ca|
∑
i∈Ca

di − |∂(Ca)| .

So, the k-means objective function of a clustering C1, . . . , Ck is∑
a

1

|Ca|
∑

(i,j)∈Ca

‖xi − xj‖2 =
∑
a

(∑
i∈Ca

di +
|∂(Ca)|
d(Ca)

)
= 2m+ r(C1, . . . , Ck).

1In class, I thought that this was the unsigned version, but I was wrong.

Lecture 21: November 12, 2013 21-12

The only problem with this result is that it is fragile. When one exatly optimizes the k-means
objective function, one minimizes the k-way ratio cut score. But, if one merely approximately
optimizes the k-means objective function then one can be very far from the optimum of the k-way
ratio cut objective function.

References

[AV07] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding.
SODA ’07: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms, Jan 2007.

[CSZ94] P.K Chan, M.D.F Schlag, and J.Y Zien. Spectral k-way ratio-cut partitioning and clus-
tering. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on DOI - 10.1109/43.310898, 13(9):1088–1096, 1994.

[DGK04] Inderjit Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: spectral clustering
and normalized cuts. KDD ’04: Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, Aug 2004.

[Llo82] S Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transactions
on, 28(2):129 – 137, 1982.

[SM00] J. B. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans. Pattern
Analysis and Machine Intelligence, 22(8):888–905, August 2000.

