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3.1 Weighted Path Graphs

We will now prove the following theorem of Fiedler:

Theorem 3.1.1. Let P be a weighted path graph on n vertices, let LP have eigenvalues 0 = λ1 <
λ2 · · · ≤ λn, and let vk be an eigenvector of λk. Then, vk changes sign k − 1 times.

The main ingredient in the proof will be Sylvester’s law of intertia, which I will first recall.

Theorem 3.1.2 (Sylvester’s Law of Intertia). Let A be any symmetric matrix and let B be any
non-singular matrix. Then, the matrix BABT has the same number of positive, negative and zero
eigenvalues as A.

I will not prove this in class today. Instead, I’ll give a proof next lecture. I include the following
proof in the lecture notes, which is different from the proof I will give next lecture.

While you might not know Sylvester’s law of intertia, we will prove it by using two things that you
do know. First, recall that if A is a square matrix and B is a non-singular matrix, then

BAB−1

has the same eigenvalues as A. This holds because

Av = λv if and only if
(
BAB−1

)
(Bv) = λ(Bv).

We also know that the rank of A and BAB are the same.

Proof. We first recall that every non-singular matrix B can be written B = QR, where Q is an
orthonormal matrix Q and R is upper-triangular matrix R with positive diagonals1 We will use a
slight variation of this fact, writing B = RQ. Now, since QT = Q−1, QAQT has exactly the same
eigenvalues as A. Let Rt be the matrix t ∗R+ (1− t)I, and consider the family of matrices

Mt = RtQAQ
TRTt ,

as t goes from 0 to 1. At t = 0, the matrix has the same eigenvalues as A. At t = 1, we get BTAB.
All of these matrices are symmetric, so they all have Real eigenvalues. As the eigenvalues of a

1This is called the QR-factorization. It follows from Gram-Schmidt orthonormalization.
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symmetric matrix are continuous functions of the matrix coefficients2, if the number of positive,
negative or zero eigenvalues of BTAB differs from that of A, then there must be some t for which
Mt has more zero eigenvalues than does A. But, as the matrices Rt are upper-triangular with
positive diagonal entries, they are all non-singular. So, the rank of Mt must equal the rank of A,
which means this cannot happen.

Fiedler’s Theorem will follow from an analysis of the eigenvalues of tri-diagonal matrices with zero
row-sums. These may be viewed as Laplacians of weighted path graphs in which some edges are
allowed to have negative weights.

Proposition 3.1.3. Let M be a symmetric matrix such that

M1 = 0.

Then,
M =

∑
i 6=j
−M(i, j)L(i,j). (3.1)

Proof. The expression on the right-hand side of (3.1) clearly agrees with M in all off-diagonal
entries. Given all the off-diagonal entries, the diagonal entries are determined by the constraint
M1 = 0, which the right-hand side of (3.1) satisfies as well because L(i,j)1 = 0 for all i 6= j.

Lemma 3.1.4. Let M be a symmetric tri-diagonal matrix with 2p positive off-diagonal entries such
that

M1 = 0. (3.2)

Then, M has p negative eigenvalues.

Proof. By Proposition 3.1.3, we may write

M =
n−1∑
i=1

−M(i, i+ 1)L(i,i+1).

Thus,

xTMx =
n−1∑
i=1

−M(i, i+ 1)(x (i)− x (i+ 1))2.

We now perform a change of variables that will diagonalize the matrix M . Let δ(1) = x (1), and
δ(i) = x (i)− x (i− 1) for i ≥ 2. So,

x (i) = δ(1) + δ(2) + · · ·+ δ(i).

This change of variables is realized by the lower-triangular matrix L which has 1’s on and below
the diagonal:

x = Lδ.

2You might not know this yet, but you will see why in the next few lectures
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By Sylvester’s law of intertia, we know that

LTML

has the same number of positive, negative, and zero eigenvalues as M . On the other hand,

δTLTMLδ =
n∑
i=2

−M(i, i+ 1)δ(i)2,

so this matrix clearly has one zero eigenvalue, and as many negative eigenvalues as there are negative
M(i, i+ 1).

Proof of Theorem 3.1.1. We will just consider the case in which vk has no zero entries. The proof
for the general case may be obtained by splitting the graph by removing the vertices with zero
entries. For simplicity, we will also assume that λk has multiplicity 1.

We wish to show that the number of i for which vk(i)vk(i+ 1) < 0 equals k − 1.

Let Vk denote the diagonal matrix with vk on the diagonal, and let λk be the corresponding k-th
eigenvalue of LP . Consider the matrix

M = V T
k (LP − λkI)Vk.

The inner matrix obviously has one zero eigenvalue and k−1 negative eigenvalues. So, by Sylvester’s
law of intertia, M has k−1 negative eigenvalues, one zero eigenvalue, and n−k positive eigenvalues.
The matrix M satisfies the conditions of Lemma 3.1.4 because

M1 = V T
k (L− λkI)Vk1 = V T

k (L− λkI)vk = V T
k 0 = 0.

Morevover,
M(i, i+ 1) = −w(i, i+ 1)vk(i)vk(i+ 1)

is positive precisely when vk(i)vk(i + 1) < 0, Thus, by Lemma 3.1.4 there are exactly k − 1 such
indices i.

3.2 Adjacency Matrices

It is sometimes convenient to consider adjacency matrices of graphs. The adjacency matrices
provide somewhat natural operators. In the unweighted case,

(AGv)(i) =
∑

j:(i,j)∈E

v(j).

As the notation
∑

j:(i,j)∈E is somewhat cumbersome, we will instead write
∑

j∼i when E is clear
from context.

Adjacency matrices can behave somewhat differently from Laplacian matrices. But, let’s begin by
seeing how they can be similar.
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For now, let G = (V,E) be an unweighted graph. The degree of a vertex i ∈ V , usually written
d(i), is the number of edges attached to it3. The graph G is said to be d-regular if every vertex has
degree d. In this case,

LG = DG −AG = dI −AG.

So, there is a very clean relationship between the spectra of AG and LG. Let

0 = λ1 ≤ λ2 ≤ · · · ≤ λn

be the eigenvalues of LG, with corresponding eigenvectors v1, . . . , vn. Similarly, let

α1 ≥ α2 ≥ · · · ≥ αn

be the eigenvalues of AG. We have
αi = d− λi,

and
AGv i = (dI − LG)v i = (d− λi)v i.

In particular, we see that the constant vectors are eigenvectors of eigenvalue d.

This happens only if the graph is d-regular. Let dmax denote the maximum degree of any vertex
in G.

Lemma 3.2.1.
α1 ≤ dmax.

Proof. Let v1 be an eigenvector of eigenvalue α1. Let j be the vertex on which it takes its maximum
value, so v1(j) ≥ v1(i) for all i, and assume without loss of generality that v1(j) 6= 0. We have

α1 =
(Av1)(j)
v1(j)

=

∑
i∼j v i(i)
v1(j)

=
∑
i∼j

v i(i)
v1(j)

≤
∑
i∼j

1 ≤ d(j) ≤ dmax. (3.3)

Lemma 3.2.2. If G is connected and α1 = dmax, then G is dmax-regular.

Proof. If we have equality in (3.3), then it must be the case that d(j) = dmax and v1(i) = v1(j)
for all i ∼ j. Thus, we may apply the same argument to every neighbor of j. As the graph is
connected, we may keep applying this argument to neighbors of vertices to which it has already
been applied to show that v1(k) = v1(j) and d(k) = dmax for all k ∈ V .

3In the weighted case, all this goes through if we sum the weights of the attached edges
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3.3 The Perron-Frobenius Theorem

We now address what happens when G is not regular. We already know that α1 < δmax, but what
does v1 look like? Actually, I do not know any convenient description of v1. But, we can show
that it is a positive vector. This is a consequence of the Perron-Frobenius Theorem, of which we
will prove a special case.

Before proving it, we will see some of its consequences.

Lemma 3.3.1. Let G = (V,E,w) be a connected weighted graph. Assume there is a positive vector
v such that

AGv = αv .

Then,

(a) There is a non-negative, non-singular diagonal matrix S such that

S−1AGS1 = α1,

(b) For every eigenvalue αi of AG,
|αi| ≤ α.

(c) The eigenvalue α has multiplicity 1.

Point (a) is an example of a matrix-scaling theorem. In this case, it says that we can scale the matrix
so that all of its row-sums are the same. This sort of statement is useful in many applications, and
so it will receive much of our attention.

Proof. Let S be the diagonal matrix with v on the diagonal. Part (a) follows from

S−1AGS1 = S−1AGv = S−1αv = αS−1v = α1.

To prove part (b), let
B = S−1AGS,

and recall that B has the same eigenvalues of AG. Let

Bu = βu .

Let j be the index of the largest entry of u , in absolute value. We then have

β =
(Bu)(j)
u(j)

=
∑
i

B(j, i)
u(i)
u(j)

.

So,

|β| =

∣∣∣∣∣∑
i

B(j, i)
u(i)
u(j)

∣∣∣∣∣ ≤∑
i

B(j, i)
∣∣∣∣u(i)
u(j)

∣∣∣∣ ≤∑
i

B(j, i) = α.
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To prove part (c), we similarly note that

β =
(Bu)(j)
u(j)

=
∑
i

B(j, i)
u(i)
u(j)

≤
∑
i

B(j, i) = α,

and that we can only have equality if
u(i)
u(j)

= 1

for all i for whichB(j, i) is non-zero. As in the proof of Lemma 3.2.2, we may exploit the connectivity
of the graph to prove that u must be the constant vector.

We will now prove that the vector v exists. Our proof will go through matrix scaling. We exploit
the fact that if S = diag(v), by which I mean that S is the diagonal matrix with v on the diagonal,
then

S−1AGS1 = α1 if and only if AGv = αv .

Theorem 3.3.2. Let G = (V,E) be a connected graph, and let A be a non-negative matrix such
that A(i, j) > 0 for all (i, j) ∈ E. Then, there exists a positive vector v and an α > 0 such that

S−1AS1 = α1,

where S = diag(v).

We will actually prove this theorem in a special case. I will leave the derivation of the theorem
from the special case to the first problem set.

Lemma 3.3.3. Let A be a matrix such that A(i, j) > 0 for all i and j. Then, there exists a positive
vector v and an α > 0 such that

S−1AS1 = α1,

where S = diag(v).

We will prove Lemma 3.3.3 by providing an algorithm for computing v . As a first attempt, let
s = A1 be the vector of row-sums in A, and let S = diag(s). All of the row-sums in the matrix
S−1A are the same, which would help us except that we need to multiply by S on the right. Let’s
do it anyway. For a matrix A, define

f(A) = S−1AS, where S = diag(A1).

On the problem set, we will show that by iteratively applying f , one can balance all the row sums
of A. In the meantime, we define

φ(A) = max(A1)−min(A1).

Lemma 3.3.4. Let A be a matrix such that A(i, j) > 0 for all i and j. Then,

φ(f(A)) < φ(A).
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Proof. We will show that this operation decreases the gap between the largest and smallest row-
sum, provided that it is non-zero. Let s = A1. Let t = S−1AGS1, so φ(f(A)) = max(t)−min(t).
We will prove that max(t) ≤ max(s). In fact, for every i For every i, we have

t(i) =
1

s(i)

∑
j

A(i, j)s(j) ≤ 1
s(i)

∑
j

A(i, j) max(s) = max(s)
1

s(i)

∑
j

A(i, j) = max(s),

so max(t) ≤ max(s). We may similarly show that t(i) ≥ min(s). So, we know that φ(f(A)) ≤ φ(A).
To obtain a strict inequality, let k be an index for which s(k) is minimized, and assume that
s(k) < max(s). Being more careful with the derivation, we find

t(i) =
1

s(i)

∑
j

A(i, j)s(j)

=
1

s(i)
A(i, k)s(k)

1
s(i)

∑
j 6=k

A(i, j)s(j)

<
1

s(i)
A(i, k) max(s)

1
s(i)

∑
j 6=k

A(i, j) max(s)

= max(s)
1

s(i)

∑
j

A(i, j)

= max(s).

Proof of Lemma 3.3.3. Let us abuse notation by defining

φ(v) = φ
(

(diag(v))−1 A (diag(v))
)
.

We have shown that for every vector v for which φ(v) > 0, there exists a vector w for which
φ(w) < φ(v). We can either prove that the limit goes to zero by analysis (as we will do in a
moment), or concretely (as we will do on the homework).

To prove that the matrices can actually be made uniform, we use a little analysis. We would like
to let v be a vector at which φ(v) is minimized. But, we must first show that such a vector exists.
To simplify this task, note that φ(v) = φ(cv) for every c > 0. So, we can now just consider vectors
v beloning to the set

U0
def=
{
v : vT1 = 1 and v > 0

}
.

It is easy to show that if some entry of v approaches zero, then φ(v) goes to infinity. So, there is
some ε > 0 for which we can restrict our attention to

Uε
def=
{
v : vT1 = 1 and v ≥ ε

}
.

The set Uε is closed and compact, and so every function on Uε achieves its infimum. We have shown
that for every v for which φ(v) > 0 there exists a w for which φ(w) < φ(v), so this infimum must
be zero, and there must be some vector v ∈ Uε for which φ(v) = 0.


