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Graphic Inequalities

Daniel A. Spielman September 18, 2009

6.1 Overview

I have two goals in this lecture. The first is to give you a technique for proving lower bounds on
λ2. The second is to show you the technique. The technique is cool: it provides a way of proving
inequalities on graphs, which we will later use to define what it means for one graph to approximate
another.

6.2 Bounds on λ2

The Courant-Fischer Theorem provides a simple way of proving upper bounds on λ2. Recall

λ2 = min
v :vT1=0

v
T Lv

v
T
v

.

So, every vector v orthogonal to 1 provides an upper bound on λ2:

λ2 ≤ v
T Lv

v
T
v

.

When we use a vector v in this way, we call it a test vector.

The Courant-Fischer theorem is not as helpful when we want to prove lower bounds on λ2. To
prove lower bounds, we need the form with a maximum on the outside, which gives

λ2 ≥ max
S:dim(S)=n−1

min
v∈S

v
T Lv

v
T
v

.

This is not too helpful, as it is difficult to prove lower bounds on

min
v∈S

v
T Lv

v
T
v

over a space S of large dimension. So, we need a new technique.

6.3 Graphic Inequalities

I begin by recalling an extremely useful piece of notation that is used in the Optimization commu-
nity. For a symmetric matrix A, we write

A < 0
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if A is positive semidefinite. That is, if
v

T Av ≥ 0,

for all v . We similarly write
A < B

if
v

T Av ≥ v
T Bv

for all v . This is the same as
A − B < 0.

The relation 4 is an example of a partial order. It applies to some pairs of symmetric matrices,
while others are incomparable. But, for all pairs to which it does apply, it acts like an order. For
example, we have

A < B and B < C implies A < C,

and
A < B implies A + C < B + C,

for symmetric matrices A, B and C.

I find it convenient to overload this notation by defining it for graphs as well. Thus, I’ll write

G < H

if LG < LH . For example, if G = (V,E) is a graph and H = (V, F ) is a subgraph of G, then

LG < LH .

To see this, recall that the Laplacian of a graph can be expressed as the sum of the Laplacians of
its edges. As F ⊆ E, we get

LG =
∑

e∈E

Le =
∑

e∈F

Le +
∑

e∈E−F

Le <

∑

e∈F

Le = LH ,

as
∑

e∈E−F

Le < 0.

In this proof, I have used the notation Le to indicate the Laplacian consisting of the graph containing
just the edge e.

This notation is most powerful when we consider some multiple of a graph. Thus, I could write

G < c · H,

for some c > 0. What is c ·H? It is the same graph as H, but the weight of every edge is multiplied
by c.

Using the Courant-Fischer Theorem, we can prove



Lecture 6: September 18, 2009 6-3

Lemma 6.3.1. If G and H are graphs such that

G < c · H,

then

λk(G) ≥ cλk(H),

for all k.

Proof. The Courant-Fischer Theorem tells us that

λk(G) = min
S⊆IRn

dim(S)=k

max
x∈S

x
T LGx

x
T
x

≥ min
S⊆IRn

dim(S)=k

max
x∈S

c
x

T LHx

x
T
x

= c min
S⊆IRn

dim(S)=k

max
x∈S

x
T LHx

x
T
x

= cλk(H).

This lemma provides an easy way of bounding how much the eigenvalues of a graph can change if
we change the weights on some of its edges.

Lemma 6.3.2. Let G = (V,E,w) and H = (V,E, z) be two graphs that differ only in their edge

weights. Then

G < min
e∈E

w(e)

z(e)
H.

Proof. Recall that the Laplacian of a graph may be expressed as the sum of the Laplacians of its
edges. So,

LG =
∑

e∈E

w(e)Le =
∑

e∈E

w(e)

z(e)
z(e)Le ≥

(

min
e∈E

w(e)

z(e)

)

∑

e∈E

z(e)Le =

(

min
e∈E

w(e)

z(e)

)

LH .

6.4 Approximations of Graphs

An idea that we will use in later lectures is that one graph approximates another if their Laplacian
quadratic forms are similar. For example, we will say that H is a c-approximation of G if

cH < G < H.

Since I really care about graph structure more than constants, I will say that H is a c-approximation
of G if any multiple of H is a c-approximation of G.

Definition 6.4.1. A graph H is a c-approximation of G if there exists a positive t for which

cH < tG < H.
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Surprising approximations exist. For example, expander graphs are very sparse approximations of
the complete graph. For example, the following is known.

Theorem 6.4.2. For every ǫ > 0, there exists a d > 0 such that for all sufficiently large n there is

a d-regular graph Gn that is a (1 + ǫ)-approximation of Kn.

These graphs have many fewer edges than the complete graphs!

6.5 The Path Inequality

Now, the question is: how do we prove that G < c · H for some graph G and H? Not too many
ways are known. We’ll do it by proving some inequalities of this form for some of the simplest
graphs, and then extending them to more general graphs. For example, we will prove

(n − 1) · Pn < G1,n. (6.1)

That is, n− 1 times the path of length n− 1 from vertex 1 to n is greater than the edge from 1 to
n.

The following very simple proof of this inequality was discovered by Sam Daitch.

Lemma 6.5.1.

(n − 1) · Pn < G1,n.

Proof. We need to show that for every x ∈ IRn,

(n − 1)

n−1
∑

i=1

(x (i + 1) − x (i))2 ≥ (x (n) − x (1))2.

For 1 ≤ i ≤ n − 1, set
δ(i) = x (i + 1) − x (i).

The inequality we need to prove then becomes

(n − 1)

n−1
∑

i=1

δ(i)2 ≥
(

n−1
∑

i=1

δ(i)

)2

.

But, this is just the Cauchy-Schwartz inequality. I’ll remind you that Cauchy-Schwartz just follows
from the fact that the inner product of two vectors is at most the product of their norms:

(n − 1)
n−1
∑

i=1

δ(i)2 = ‖1n−1‖2 ‖δ‖2 = (‖1n−1‖ ‖δ‖)2 ≥
(

1T
n−1δ

)2
=

(

n−1
∑

i=1

δ(i)

)2

.

While I won’t cover it in lecture, I will also state the version of this inequality for weighted paths.
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Lemma 6.5.2. Let w1, . . . , wn−1 be positive. Then

G1,n 4

(

n−1
∑

i=1

1

wi

)

n−1
∑

i=1

wiGi,i+1.

Proof. Let x ∈ IRn and set δ(i) as in the proof of the previous lemma. Now, set

γ(i) = δ(i)
√

wi.

Let w
−1/2 denote the vector for which

w
−1/2(i) =

1√
wi

.

Then,
∑

i

δ(i) = γT
w

−1/2,

∥

∥

∥
w

−1/2
∥

∥

∥

2
=
∑

i

1

wi
,

and
‖γ‖2 =

∑

i

δ(i)2wi.

So,

x
T LG1,n

x =

(

∑

i

δ(i)

)2

=
(

γT
w

−1/2
)2

≤
(

‖γ‖
∥

∥

∥
w

−1/2
∥

∥

∥

)2
=

(

∑

i

1

wi

)

∑

i

δ(i)2wi =

(

∑

i

1

wi

)

x
T

(

n−1
∑

i=1

wiLGi,i+1

)

x .

6.5.1 Bounding λ2 of a Path Graph

Even though we already know all the eigenvalues of an unweighted path graph, I am going to take
a moment to demonstrate how one can use these techniques to easily get bounds on λ2 of a path
graph. First, let’s use a test vector to get an upper bound.

Consider the vector x such that x (i) = (n + 1) − 2i, for 1 ≤ i ≤ n. This vector satisfies x ⊥ 1, so

λ2(Pn) ≤
∑

1≤i<n(x(i) − x(i + 1))2
∑

i x(i)2

=

∑

1≤i<n 22

∑

i(n + 1 − 2i)2

=
4(n − 1)

(n + 1)n(n − 1)/3

=
12

n(n + 1)
.
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So, we can easily obtain an upper bound on λ(Pn) that is of the right order of magnitude.

To prove a lower bound on λ2(Pn), we will prove that some multiple of the path is at least the
complete graph. To this end, recall that

LKn
=
∑

i<j

LGi,j
,

and that
λ2(Kn) = n.

For every edge (i, j) in the complete graph, we apply the only inequality available in the path:

Gi,j 4 (j − i)

j−1
∑

k=i

Gk,k+1 4 (j − i)Pn.

Summing this inequality over all edges (i, j) ∈ Kn gives

Kn =
∑

i<j

Gi,j 4

∑

i<j

(j − i)Pn.

To finish the proof, we compute

∑

1≤i<j≤n

(j − i) =

n−1
∑

k=1

k(n − k) = n(n + 1)(n − 1)/6.

So,
n(n + 1)(n − 1)

6
· LPn

< LKn
.

Applying Lemma 6.3.1, we obtain

λ2(Pn) ≥ 6

(n + 1)(n − 1)
.

This only differs from our lower bound by a factor of 2.

6.5.2 The Complete Binary Tree

Let’s do the same analysis with the complete binary tree.

The complete binary tree on n = 2d − 1 nodes, Tn, is the graph with edges of the form (i, 2i) and
(i, 2i + 1) for i < n/2. Pictorially, these graphs look like this:

Let’s first upper bound λ2(Bn) by constructing a test vector x. Set x(1) = 0, x(2) = 1, and
x(3) = −1. Then, for every vertex u that we can reach from node 2 without going through node 1,
we set x(u) = 1. For all the other nodes, we set x(u) = −1.

We then have

λ2 ≤
∑

(i,j)∈Tn
(xi − xj)

2

∑

i x
2
i

=
(x1 − x2)

2 + (x1 − x3)
2

n − 1
= 2/(n − 1).
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Figure 6.1: T3, T7 and T15. Node 1 is at the top, 2 and 3 are its children. Some other nodes have
been labeled as well.
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Figure 6.2: The test vector we use to upper bound λ2(T15).

We will again prove a lower bound by comparing Tn to the complete graph. For each edge (i, j) ∈
Kn, let Tn(i, j) denote the unique path in T from i to j. This path will have length at most 2 log2 n.
So, we have

Kn =
∑

i<j

Gi,j 4

∑

i<j

(2 log2 n)Tn(i, j) 4

∑

i<j

(2 log2 n)Tn =

(

n

2

)

(2 log2 n)Tn.

So, we obtain the bound
(

n

2

)

(2 log2 n)λ2(Tn) ≥ n,

which implies

λ2(Tn) ≥ 1

(n − 1) log2 n
.

In the problem set, I will ask you to improve this lower bound to 1/cn for some constant c.


