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13.1 Overview

In this lecture, I will explain how to make graphs from groups. I will begin by constructing a graph
from a linear error-correcting code.

13.2 Graphs from Linear Codes

Consider a linear code over {0, 1} from m bits to n bits. We may assume that such a code is
encoded by an m-by-n matrix M , and that its codewords are the vectors

bM,

where b ∈ {0, 1}m. Let d be the minimum distance of this code. We will use this code to construct
an n-regular graph on 2m vertices with λ2 = 2d. The construction will be a generalization of the
hypercube, and in fact the hypercube will be obtained if we take M = Im.

We will take as the vertex set V = {0, 1}m. Thus, I will also write vertices as vectors, such as x
and y . Two vertices x and y will be connected by an edge if their sum modulo 2 is a column of
M .

Let me say that again. Let m1, . . . ,mn be the columns of M . Then, the graph has edge set

{(x ,x + m j) : x ∈ V, 1 ≤ j ≤ n} .

Of course, this addition is taken modulo 2. You should now verify that if M is the identity matrix,
we get the hypercube. In the general case, it is like a hypercube with extra edges.

13.3 Analyzing the Eigenvectors and Eigenvalues

For each b ∈ {0, 1}m, define the function vb from V to the Reals given by

vb(x ) = (−1)b
T x .

While it is natural to think of b as being a vertex, that is the wrong perspective. Instead, you
should think of b as indexing a Fourier coefficient (if you don’t know what a Fourier coefficient it,
just don’t think of it as a vertex).

The eigenvectors and eigenvalues of the graph are determined by the following theorem.
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Theorem 13.3.1. For each b ∈ {0, 1}m the vector vb is an adjacency matrix eigenvector of with
eigenvalue

n− 2 |bM | .

Before proving the theorem, I will establish some elementary facts that could appear mysterious if
they are presented in the middle of the proof. First, note that for two vectors x and y in {0, 1}m,

bT (x + y) = bTx + bTy .

This is of course true, because {0, 1}m is a vector space under addition modulo 2. This equality
implies

(−1)b
T (x+y) = (−1)b

T x (−1)b
T y .

For any b, |bM | is the Hamming weight of the codeword bM . We will also write it

|bM | =
m∑

i=1

bTm i taking the sum over the Reals, not modulo 2

=
m∑

i=1

1− (−1)b
T mi

2
.

We will use this in the form
m∑

i=1

(−1)b
T mi = n− 2 |bM | .

Proof of Theorem 13.3.1. Let A be the adjacency matrix of the graph. For any vector vb for
b ∈ {0, 1}m and any vertex x ∈ V , we compute

(Avb)(x ) =
m∑

i=1

vb(x + m i)

=
m∑

i=1

(−1)b
T (x+mi)

=
m∑

i=1

(−1)b
T x (−1)b

T mi

= (−1)b
T x

m∑
i=1

(−1)b
T mi

= vb(x )(n− 2 |bM |).

So, vb is an eigenvector of eigenvalue n− 2 |bM |.

So, if d is the minimum weight of a non-zero codeword, then α2 = n− 2d, and λ2 = 2d.

Thus, an asymptotically good error-correcting code gives us a good expander graph, although of
logarithmic degree. Last week we learned that for every δ < 1/2, there is an r > 0 such that, for
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sufficiently large n, there exist codes of length n, rate r, and relative minimum distance δn. These
provide graphs on 2rn vertices of degree n with λ2 ≥ 2δn. So, these are expanders with degree
logarithmic in the number of vertices. But, I should mention two caveats. In the proof of Theorem
10.2.1 and 10.3.1, we assumed an upper bound on λmax as well. It turns out that an upper bound
on λmax is unnecessary for Theorem 10.3.1, and for one side of Theorem 10.2.1. But, if we wanted
an upper bound on λmax, it would be easy to modify the proof of Lemma 11.5.1 to provide one
as well. The idea is to also show that it is unlikely that there are any codewords of very large
Hamming weight.

13.4 Groups

This construction is a special case of a general construction of graphs from groups, called Cayley
graphs.

In case you don’t recall what a group is, I will remind you. A group consists of a set of elements
Γ, together with a binary operations on these elements, often denoted ◦. For elements g and h of
Γ, g ◦ h is always another element of Γ. The set Γ and operation ◦ form a group if

1. Γ contains a special element, called the identity and often written id , such that g ◦ id = g
and id ◦ g = g for all g ∈ Γ.

2. For every element g ∈ Γ, there is another element g−1 ∈ Γ such that g ◦ g−1 = id and
g−1 ◦ g = id.

3. For every f , g and h in Γ, f ◦ (g ◦ h) = (f ◦ g) ◦ h.

You won’t need to know any group theory to follow this lecture, because the only groups we will
use will be groups that you already know. Here are some examples of groups.

1. Let Γ be the integers, and ◦ be addition. The identity element is 0. This group is usually
written Z.

2. For any number n > 0, let Γ be the integers modulo n, and let ◦ be addition. Again, the
identity element is 0. This group is usually written Z/n.

3. For any prime p, let Γ be the integers modulo p, except for 0. Let ◦ be multiplication. This
is a group, and the identity element is 1. If we included 0, it would not be a group because
0 does not have an inverse. Similarly, if we tried to use all the integers, instead of working
modulo p, it would not be a group because 2 would not have an inverse under multiplication.
If we tried the integers modulo a non-prime, say n = ab, it would not be a group because a
would not have an inverse. To see this, assume that a−1 exists, and get a contradiction by

(a−1a)b = a−1(ab) implies

(id)b = a−1(n) implies
b = 0.
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If you haven’t seen a proof of it before, I recommend that you figure out why you do get a
group when n is a prime.

4. For some integer k > 0, let Γ be the set {0, 1}k, and let ◦ be component-wise addition, modulo
2. The identity is the all-zero element. This group is called (Z/2)k, and sometimes F k

2 or
GF (2)k.

This is the example we just did in the previous section. In this group, every element is its
own inverse!

5. For some integer k > 0, let Γ be the set of all k-by-k matrices over the integers, and let ◦ be
addition. The identity is the all-zero matrix. We can also do this with matrices modulo an
integer.

6. For some integer k > 0, let Γ be the set of all k-by-k non-singular matrices over the integers,
and let ◦ be multiplication. The identity is the standard identity matrix. We can also do this
with integers modulo a prime.

For this lecture, we will just consider the second and fourth of these groups. These groups have the
advantage1 of begin both finite and Abelian, where I recall that a group is abelian if g ◦ h = h ◦ g
for all g and h in Γ.

13.5 Cayley Graphs

A Cayley graph is defined by a group (Γ, ◦) and a set of generators, a subset S of Γ that is closed
under inverse. That is, for every g ∈ S, g−1 ∈ S. The vertex set of the Cayley graph is Γ, and the
edges are the pairs

{(g, h) : h = g ◦ s for some s ∈ S} = {(g, g + s) : s ∈ S} .

For example, we get the ring graph on n vertices by taking (Γ, ◦) = (Z/n,+) and S = {1,−1}. By
“−1”, we of course mean modulo n; so this is the same thing as n− 1.

13.6 Eigenvectors of Cayley Graphs of Abelian Groups

The wonderful thing about Cayley graphs of Abelian groups is that we can construct an orthornor-
mal basis of eigenvectors for these graphs without even knowing the set of generators S. That
is, the eigenvectors only depend upon the group. Related results also hold for Cayley graphs of
arbitrary groups, and are related to representations of the groups. See [Bab79] for details.

As Cayley graphs are regular, it won’t matter which matrix we consider. For simplicity, we will
consider adjacency matrices.

1This is an advantage in that they are easier to understand. It actually limits what one can do with them quite a
bit.
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Let n be an integer and let G be a Cayley graph on Z/n with generator set S. When S = {±1},
we get the ring graphs. For general S, I think of these as generalized Ring graphs. Let’s first see
that they have the same eigenvectors as the Ring graphs.

Recall that we proved that the vectors x k and yk were eigenvectors of the ring graphs, where

x k(u) = sin(2πku/n), and
yk(u) = cos(2πku/n),

for 1 ≤ k ≤ n/2.

Let’s just do the computation for the x k, as the yk are similar. For every u modulo n, we have

(Ax k)(u) =
∑
g∈S

x k(u+ g)

=
1
2

∑
g∈S

x k(u+ g) + x k(u− g)


=

1
2

∑
g∈S

sin(2πk(u+ g)/n) + sin(2πk(u− g)/n)


=

1
2

∑
g∈S

2 sin(2πku/n) cos(2πkg/n)


= sin(2πku/n)

∑
g∈S

cos(2πkg/n)

= x k(u)
∑
g∈S

cos(2πkg/n).

So, the corresponding eigenvalue is ∑
g∈S

cos(2πkg/n).

This makes it easy to bound the eigenvalues of a random generalized ring graph. If we choose
a random generator set of size Θ(logn), we will also obtain an expander, just as we did for the
hypercubes. To see why, consider the value of∑

g∈S

cos(2πkg/n)

when we choose S at random, of size d. For k > 0, this eigenvalue is a sum of d random variables,
each of absolute value at most 1 and symmetrically distributed around 0. So, their sum will be
concentrated around 0, and the probability that is is greater than κ

√
d will be exponentially small

in κ2. If we take κ larger enough that this probability is smaller than 1/n, then we can get a bound
on every eigenvalue. When d = c log n, we will be able to prove such a bound with κ proportional
to
√

log n as well, which will yield upper bounds on all eigenvalues other than the first. I won’t
go through exact settings of the parameters as they rely on Chernoff bounds. But, in a few weeks
(maybe next week?) we will prove concentration bounds that will suffice for our analysis.
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13.7 Non-Abelian Groups

In the homework, you will show that it is impossible to make constant-degree expander graphs from
Cayley graphs of Abelian groups. The best expanders are constructed from Cayley graphs of 2-by-2
matrix groups. In particular, the Ramanujan expanders of Margulis [Mar88] and Lubotzky, Phillips
and Sarnak [LPS88] are Cayley graphs over the Projective Special Linear Groups PSL(2, p), where
p is a prime. These are the 2-by-2 matrices modulo p with determinant 1, in which we identify A
with −A.

They provided a very concrete set of generators. For a prime q modulo to 1 modulo 4, it is known
that there are p+ 1 solutions to the equation

a2
1 + a2

2 + a2
3 + a2

4 = p,

where a1 is odd and a2, a3 and a4 are even. We obtain a generator for each such solution of the
form:

1
√
p

[
a0 + ia1 a2 + ia3

−a2 + ia3 a0 − ia1

]
,

where i is an integer that satisfies i2 = −1 modulo p.

Even more explicit constructions, which do not require solving equations, may be found in [ABN+92].
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