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14.1 Overview

I am going to present the simplest construction of expanders that I have been able to find. By
“simplest”, I mean optimizing the tradeoff of simplicity of construction with simplicty of analysis.
It is inspired by the Zig-Zag product and replacement product constructions presented by Reingold,
Vadhan and Wigderson [RVW02].

For those who want the quick description, here it is. Begin with an expander. Take its line graph.
Obsever that the line graph is a union of cliques. So, replace each clique by a small expander. We
need to improve the expansion slightly, so square the graph. Square one more time. Repeat.

The analysis will be simple because all of the important parts are equalities, which I find easier to
understand than inequalities.

14.2 Line Graphs

Our construction will leverage small expanders to make bigger expanders. To begin, we need a way
to make a graph bigger and still say something about its spectrum.

We use the line graph of a graph. Let G = (V,E) be a graph. The line graph of G is the graph
whose vertices are the edges of G in which two are connected if they share an endpoint in G. That
is,
(
(u, v), (w, z)

)
is an edge of the line graph if one of {u, v} is the same as one of {w, z}. The line

graph is often written L(G), but we won’t do that in this class so that we can avoid confusion with
the Laplacian.

insert picture here

Let G be a d-regular graph with n vertices, and let H be its line graph. As G has dn/2 edges, H
has dn/2 vertices. Each vertex of H, say (u, v), has degree 2(d− 1): d− 1 neighbors for the other
edges attached to u and d− 1 for v. In fact, if we just consider one vertex u in V , then all vertices
in H of form (u, v) of G will be connected. That is, H contains a d-clique for every vertex in V .
We see that each vertex of H is contained in exactly two of these cliques.

Here is the great fact about the spectrum of the line graph.

Lemma 14.2.1. Let G be a d-regular graph with n vertices, and let H be its line graph. Then the
spectrum of the Laplacian of H is the same as the spectum of the Laplacian of G, except that it has
dn/2− n extra eigenvalues of 2(d− 1).
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Before we prove this lemma, we need to recall an elementary fact about the Laplacian that we
neglected to mention in earlier lectures.

14.3 A Factorization of a Laplacian

Recall from Lecture 2 that the Laplacian matrix of an unweighted graph G is given by

LG = DG −AG =
∑

(u,v)∈E

LGu,v ,

where by LGu,v we mean the Laplacian matrix of the graph containing just the edge (u, v). This
matrix is zero every where, except on the rows and columns indexed by u and v on which it looks
like [

1 −1
−1 1

]
.

This latter matrix may be simply factored as[
1 −1
−1 1

]
=
(

1
−1

)(
1 −1

)
.

So, if we let χu denote the column vector that is 1 in position u and zero elsewhere, we can write

LGu,v = (χu − χv)(χu − χv)T ,

and
LG =

∑
(u,v)∈E

(χu − χv)(χu − χv)T .

Recall that when x and y are column vectors,

xxT + yyT =
[
x y

] [xT

yT

]
.

So, we can write LG as the product of a matrix with its transpose. Let U be the n-by-m matrix
with rows indexed by vertices and columns indexed by edges with the column correpsonding to
edge (u, v) being χu − χv. Then,

LG = UUT .

This matrix is called a signed vertex-edge incidence matrix of G. Note that we have made an
arbitrary choice in our construction of U . We could have chosen χu − χv or χv − χu. It doesn’t
matter which we choose, as long as we make a choice. It factors out when we multiply U by UT .

14.4 The Spectrum of the Line Graph

Define the matrix |U | to be the matrix obtained by replacing every entry of U by its absolute value.
Now, consider |U | |U |T . It looks just like the Laplacian, except that all of its off-diagonal entries
are 1 instead of −1. So,

|U | |U |T = DG +AG.
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We will also consider the matrix |U |T |U |. This is a matrix with nd/2 rows and nd/2 columns,
indexed by edges of G. The entry at the intersection of row (u, v) and column (w, z) is

(χu + χv)T (χw + χz).

So, it is 2 if these are the same edge, 1 if they share a vertex, and 0 otherwise. That is

|U |T |U | = 2Ind/2 +AH .

Moreover, |U | |U |T and |U |T |U | have the same eigenvalues, except that the later matrix has nd/2−n
extra eigenvalues of 0.

Proof of Lemma 14.2.1. First, let λi be an eigenvalue of LG. We see that

λi is an eigenvalue of DG −AG =⇒
d− λi is an eigenvalue of AG =⇒
2d− λi is an eigenvalue of DG +AG =⇒
2d− λi is an eigenvalue of 2Ind/2 +AH =⇒
2(d− 1)− λi is an eigenvalue of AH =⇒
λi is an eigenvalue of DH −AH .

Of course, this last matrix is the Laplacian matrix of H. We can similarly show that the extra
dn/2− n zero eigenvalues of 2Ind/2 +AH become 2(d− 1) in LH .

While the line graph operation preserves λ2, it causes the degree of the graph to grow. So, we are
going to need to do more than just take line graphs to construct expanders.

We will analyze the graphs that appear in our construction by keeping track of the ratio of their
second-smallest Laplacian eigenvalues to their degree: λ2/d. We will call this quantity the spectral
ratio of a graph. Because of the nature of our construction, we will not need to worry about λn,
as it is guaranteed to be close to the degree in the end. Our construction will produce an infinite
family of d-regular graphs with spectral ratio bounded below by some absolute constant β > 0. We
will do this for small β, as the analysis for large β is trickier.

We see that the spectral ratio of the line graph of G is approximately half that of G. But, the line
graph has more vertices.

14.5 Approximations of Line Graphs

Our next step will be to construct approximations of line graphs. We already know how to approx-
imate complete graphs: we use expanders. As line graphs are sums of complete graphs, we will
approximate them by sums of expanders. That is, we replace each clique in the line graph by an
expander on d vertices.
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Let G be a d-regular graph and let K be a graph on d vertices (we will use a low-degree expander).
We define the graph

G L©K

to be the graph obtained by forming the edge graph of G, H, and then replacing every d-clique
in H by a copy of K. Actually, this does not uniquely define G L©K, as there are many ways to
replace a d-clique by a copy of K. But, any choice will work. Note that every vertex of G L©K has
degree 2k.

Lemma 14.5.1. Let G be a d-regular line graph, and let K be a k-regular graph on d vertices that
ε-approximates k

dKd. Let H be the line graph of G. Then,

(1− ε)G L©K 4
k

d
H 4 (1 + ε)G L©K

Proof. As H is a sum of d-cliques, let H1, . . . ,Hn be those d-cliques. So,

LH =
n∑

i=1

LHi .

Let Ki be the graph obtained by replacing Hi with a copy of K, on the same set of vertices. To
prove the lower bound let x be any vector. We have

k

d
xTLHx =

n∑
i=1

xT k

d
LHix ≥

n∑
i=1

(1− ε)xTLKix = (1− ε)
n∑

i=1

xTLKix = (1− ε)xT (G L©K)x .

So, the spectral ratio of G L©K is a little less than half that of G. But, the degree of G L©K is 2k,
which we will arrange to be much less than the degree of G, d.

14.6 Squaring the graph

We can improve the spectral ratio of a graph by squaring it, at the cost of increasing its degree.
Given a graph G, we define the graph G2 to be the graph in which vertices u and v are connected
if they are at distance 2 in G. Formally, G2 should be a weighted graph in which the weight of an
edge is the number of such paths. We may form the adjacency matrix of G2 from the adjacency
matrix of G. Let A be the adjacency matrix of G. Then A2(u, v) is the number of paths of length
2 between u and v in G, and A2(v, v) is always d. So,

AG2 = A2
G − dIn.

In our construction, it is easy to ensure that the graph we square has no triangles, so all of the
edges in its square will have weight 1.
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Lemma 14.6.1. Let G be a d-regular graph whose second-smallest Laplacian eigenvalue is λ2.
Then, G2 is a d(d− 1)-regular graph whose second-smallest Laplacian eigenvalue is

2dλ2 − λ2
2,

and whose largest Laplacian eigenvalue is at most d2.

Proof. First, let’s handle the largest Laplacian eigenvalue. As A2
G is positive semi-definite, the

smallest eigenvalue of AG2 is at least −d, and so the largest Laplacian eigenvalue of G2 is at most

d(d− 1)− d = d2.

As for the other eigenvalues, we find that

λi is an eigenvalue of LG =⇒
d− λi is an eigenvalue of AG =⇒
(d− λi)2 − d is an eigenvalue of AG2 =⇒
d(d− 1)− (d− λi)2 + d is an eigenvalue of LG2 ,

and
d(d− 1)− (d− λi)2 + d = d2 − (d− λi)2 = 2dλi − λ2

i .

If the spectral ratio of G is small, then the spectral ratio of G2 will be approximately twice the
spectral ratio of G.

14.7 The whole construction

We begin with any small d-regular expander graph G0. And let β be its spectral ratio. We will
assume that β is small, but greater than 0, say 1/20. Of course, it does not hurt to start with a
graph of larger spectral ratio.

We then construct G0 L©K. The degree of this graph is 2k, and its spectral ratio is a little less than
β/2. So, we square the resulting graph, to obtain

(G0 L©K)2.

It has degree approximately 4k2, and spectral ratio slightly less than β. But, for induction, we
need it to be more than β. So, we square one more time, to get a spectral ratio a little less than
2β. We now set

G1 =
(

(G0 L©K)2
)2
.

As G1 is a square, its largest Laplacian eigenvalue is extremely close to its degree. The graph G1

is at least as good an approximation of a complete graph as G0, and it has degree approximately
16k4. In general, we set

Gi+1 =
(

(Gi L©K)2
)2
.
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To make the inductive construction work, we need for K to be a graph of degree k whose number
of vertices equals the degree of G. This is approximately 16k4, and is exactly

(2k(2k − 1))2 − 2k(2k − 1).

Last lecture we learned how to find such graphs that are very good approximations of complete
graphs.

The graphs Gi that we construct are not all that good approximations of the complete graph: we
just know that the ratio of the second-smallest Laplacian eigenvalue to the degree is bounded away
from zero by β. To improve their spectral ratio, we can just square them a few times.

14.8 Better Constructions

There is a better construction technique, called the Zig-Zag product [RVW02]. The Zig-Zag con-
struction is a little trickier to understand, but it achieves better expansion. I chose to present
the line-graph based construction because its analysis is very closely related to an analysis of the
Zig-Zag product.
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