
Spectral Graph Theory Lecture 16

Preconditioning by Low-Stretch Spanning Trees

Daniel A. Spielman October 23, 2009

16.1 Overview

After reviewing the most important facts about the Conjugate Gradient algorithm, I will explain
how it can be improved by preconditioning. I will then show how preconditioning relates to graphic
inequalities, and show that low-stretch spanning trees provide good preconditioners. This last part
is an extension from [SW09] of a suggestion of Boman and Hendrickson [BH01].

16.2 The Conjugate Gradient, take 2

I’ll begin this lecture by stating again the important properties of the Conjugate Gradient algorithm,
since they might have been missed in the fog of last lecture.

The Conjugate Gradient algorithm allows us to solve linear equations of the form

Ax = b,

where A is symmetric and positive definite. We can also use this algorithm if A is degenerate, but
we know the nullspace.

The Conjugate Gradient is iterative. In each iteration it multiplies one vector by A, and performs
a constant number of vector operations. Let x t be the tth iterate produced by the algorithm. It
satisfies the following guarantee:∥∥x − x t

∥∥
A

‖x‖A
≤ inf

p of degree t
p(0)=1

max
λi∈eigs(A)

|p(λi)| .

I should recall that
‖x‖A =

√
xTAx .

To get some idea of where this comes from, recall that I said that the Conjugate Gradient finds the

x t ∈ Span
(
b, Ab, A2b, . . . , At−1b

)
that minimizes ∥∥x − x t

∥∥
A
.

16-1

Lecture 16: October 23, 2009 16-2

Now, if p(X) is a polynomial of degree t such that p(0) = 1, we can write

p(X) = 1− q(X)X,

where q(X) is a polynomial of degree t− 1. The Conjugate Gradient may choose

x t = q(A)b.

As b = Ax , this gives
x t = q(A)Ax ,

and
x − x t = x − q(A)Ax = p(A)x .

If we expand x in the eigenbasis of A as

x =
∑
i

civ i,

then we get
x − x t =

∑
i

cip(λi)v i,

and so ∥∥x − x t
∥∥2

A
=
∑
i

cip(λi)2λiv i ≤ max
i
|p(λi)|2

∑
i

ciλiv i =
(

max
i
|p(λi)|2

)
‖x‖2A .

In particular, the nth iterate must be exactly x . To see this, consider the polynomial

p(X) =
∏
i

(1−X/λi).

It takes the value 1 at 0, and is zero at every eigenvalue of A. So, the Conjugate Gradient always
takes at most n iterations. This is wonderful when A is sparse, say having O(n) non-zero entries.
In this case, CG runs in time O(n2), which is as long as it would take just to write down the inverse
of A.

The Conjugate Gradient is often faster than this.

Theorem 16.2.1. For t ≥ 1 and 0 < α < β, there exists a polynomial p(X) of degree t such that
p(0) = 1 and

|p(λ)| ≤ 2
(√

κ− 1√
κ+ 1

)t
,

for all α ≤ λ ≤ β and κ = β/α.

Lecture 16: October 23, 2009 16-3

16.3 Preconditioning

The idea of preconditioning is to instead consider the problem of solving the linear system

B−1Ax = B−1x .

This system of course has the same solution as the original. The matrix B is called a preconditioner,
and it should also be positive definite (or positive semidefinite with the same known nullspace as
A).

We will apply a variant of the Conjugate Gradient, called the Preconditioned Conjugate Gradient,
to solve this modified system. In each iteration, it will multiply a vector by A, solve a linear system
in B, and perform a constant number of vector operations. Its output satisfies the same guarantee
as the Conjugate Gradient, but with

κ(A,B) =
λmax(B−1A)
λmin(B−1A)

.

If we use B = I the linear solve in B is trivial, but the running time is the same as the Conjugate
Gradient. If we use B = A, then κ(A,B) = 1, but we haven’t saved ourselves any work. Precondi-
tioning is useful when κ(A,B) is much smaller than κ(A), and it is easy to solve linear equations
in B.

You might be concerned that B−1A is not symmetric. Let me put those concerns to rest. As A is
positive definite, it has a square root:

A1/2 = V D1/2V T , where A = V DV T .

So, B−1A has the same eigenvalues as

A1/2(B−1A)A−1/2 = A1/2B−1A1/2,

which is symmetric and positive definite. Similarly, for any j

A1/2(B−1A)jA−1/2 =
(
A1/2B−1A1/2

)j
.

PCG finds the x t in

x t ∈ Span
(
b, b−1Ab, (B−1A)2b, . . . , (B−1A)t−1b

)
that minimizes ∥∥x − x t

∥∥
A
.

Thus, we can show that ∥∥x − x t
∥∥
A

‖x‖A
≤ inf

p of degree t
p(0)=1

max
λi∈eigs(B−1A)

|p(λi)| .

Lecture 16: October 23, 2009 16-4

To see why, write p(X) = 1− q(X)X as before. If we set x t = q(X)b, then∥∥x − x t
∥∥2

A

‖x‖2A
=

(x − x t)TA(x − x t)
xTAx

=
(p(B−1A)x)TA(p(B−1A)x)

xTAx

=
(p(A1/2B−1A1/2)y)T (p(A1/2B−1A1/2)y)

yTy
,

where we set
y = A1/2x .

As before, we see that this last ratio is at most∥∥∥p(A1/2B−1A1/2)
∥∥∥2

= max
λi∈eigs(A1/2B−1A1/2)

|p(λi)|2 = max
λieigs(B−1A)

|p(λi)|2 .

16.4 Approximating Graphs and Preconditioning

Let me first relate the eigenvalues of B−1A to our 4 notation.

Lemma 16.4.1. Let A and B be positive definite matrices such that

αB 4 A 4 βB.

Then all the eigenvalues of B−1A lie between α and β.

Proof. We will just prove the upper bound. We have

λmax(B−1A) = λmax(B−1/2AB−1/2)

= max
x

xTB−1/2AB−1/2x

xTx

= max
y

yTAy

yTBy
, settting y = B−1/2x ,

≤ β.

Again, we can do all this with degenerate positive semi-definite matrices as long as we know their
nullspaces. Throughout this lecture, whenever I write the inverse of a degenerate matrix, I will
actually mean the pseudo-inverse. This is the operator that is the inverse on the range, and is zero
on the nullspace. Formally, if A =

∑
i λiv iv

T
i , then the pseudo-inverse of A is∑

i:λi 6=0

1
λi

v iv
T
i .

Lecture 16: October 23, 2009 16-5

Vaidya [Vai90] had the remarkable idea of preconditioning the Laplacian matrix of a graph by the
Laplacian matrix of a subgraph. If H is a subgraph of G, then

LH 4 LG,

so all eigenvalues of L−1
H LG are at least 1. This reduces us to upper bounding the largest eigenvalues,

and finding subgraphs whose Laplacians are easy to invert.

16.5 Preconditioning by Trees

It is relatively easy to show that linear equations in the Laplacian matrices of trees can be solved
exactly in linear time. One can either do this by finding an LU -factorization with a linear number
of non-zeros, or by viewing the process of solving the linear equation as a dynamic program that
passes up once from the leaves of the tree to a root, and then back down.

We will now show that a special type of tree, called a low-stretch spanning tree provides a very
good preconditioner. To begin, let T be a spanning tree of G. Write

LG =
∑

(u,v)∈E

wu,vLu,v =
∑

(u,v)∈E

wu,v(χu − χv)(χu − χv)
T .

We will actually consider the trace of L−1
T LG. As the trace is linear, we have

Tr
(
L−1
T LG

)
=

∑
(u,v)∈E

wu,vTr
(
L−1
T Lu,v

)
=

∑
(u,v)∈E

wu,vTr
(
L−1
T (χu − χv)(χu − χv)

T
)

=
∑

(u,v)∈E

wu,vTr
(
(χu − χv)

TL−1
T (χu − χv)

)
=

∑
(u,v)∈E

wu,v(χu − χv)
TL−1

T (χu − χv).

To see why the last step is true, recall that Tr (AB) = Tr (BA) for all matrices A and B. To evalue
this last term, we need to know the value of (χu−χv)TL

−1
T (χu−χv). You already know something

about it. Let T (u, v) denote the path in T from u to v, and let w1, . . . , wk denote the weights of
the edges on this path. We proved in Lemma 6.5.2 that

Lu,v 4

(
k∑
i=1

1
wi

)
LT (u,v).

As Lu,v is a rank-1 matrix, this tells us that

(χu − χv)
TL−1

T (χu − χv) ≤
k∑
i=1

1
wi
. (16.1)

Lecture 16: October 23, 2009 16-6

In fact, this is an equality. Even better, the term (16.1) is something that has been well-studied.
It was defined by Alon, Karp, Peleg and West [AKPW95] to be the stretch of the unweighted edge
(u, v) with respect to the tree T . Moreover, the stretch of the edge (u, v) with weight wu,v with
respect to the tree T is defined to be exactly

wu,v

k∑
i=1

1
wi
,

where again w1, . . . , wk are the weights on the edges of the unique path in T from u to v. A
sequence of works, begining with [AKPW95], has shown that every graph G has a spanning tree in
which the sum of the stretches of the edges is low. The best result so far is due to [ABN08], who
prove the following theorem.

Theorem 16.5.1. Every weighted graph G has a spanning tree subgraph T such that the sum of
the stretches of all edges of G with respect to T is at most

O(m log n(log log n)2),

where m is the number of edges G.

Thus, if we choose a low-stretch spanning tree T , we will ensure that

Tr
(
L−1
T LG

)
=

∑
(u,v)∈E

wu,v(χu − χv)
TL−1

T (χu − χv) ≤ O(m log n(log log n)2).

In particular, this tells us that λmax(L−1
T LG) is at most O(m log n(log log n)2), and so the Precon-

ditioned Conjugate Gradient will require at most O(m1/2 log n) iterations, each of which requires
one multiplication by LG and one linear solve in LT .

16.6 Improving the Bound on the Running Time

We can show that the Preconditioned Conjugate Gradient will actually run in closer to O(m1/3)
iterations. Since the trace is the sum of the eigenvalues, we know that for every β > 0, L−1

T LG has
at most

Tr
(
L−1
T LG

)
/β

eigenvalues that are larger than β.

To exploit this fact, we use the following lemma.

Lemma 16.6.1. Let λ1, . . . , λn be positive numbers such that all of them are at least α and at most
k of them are more than β. Then, for every t ≥ k, there exists a polynomial p(X) of degree t such
that p(0) = 1 and

|p(λi)| ≤ 2

(√
β/α− 1√
β/α+ 1

)t−k
,

for all λi.

Lecture 16: October 23, 2009 16-7

Proof. Let r(X) be the polynomial of degree t− k known to exist by Theorem 16.2.1 for which

|r(λ)| ≤ 2

(√
β/α− 1√
β/α+ 1

)t−k
,

for all λ between α and β. Now, set

p(X) = r(X)
∏

i:λi>β

(1−X/λi).

This new polynomial is zero at every λi greater than β, and for λ less than β

|p(λ)| = |r(λ)|
∏

i:λi>β

|(1− λ/λi)| ≤ |r(λ)| ,

as we always have λ < λi in the product.

Applying this lemma to the analysis of the Preconditioned Conjugate Gradient, with β = Tr
(
L−1
T LG

)2/3
and k = Tr

(
L−1
T LG

)1/3, we find that the algorithm produces ε-approximate solutions within

O(Tr
(
L−1
T LG

)1/3 ln(1/ε)) = O(m1/3 log n ln 1/ε)

iterations.

16.7 Further Improvements

Next week, Nikhil Srivastava will prove that for every graph G, there exists a graph H with
O(n/ε2) edges that is an ε-approximation of G. This construction may be viewed as a far-reaching
generalization of expander graphs.

As we can solve linear equations in H in time O(n2), this gives us a way of solving linear equations
in G in time O(n2 ln 1/ε), regardless of how many edges G has. This is better than O(m4/3) when
m is large.

In fact, by combining low-stretch spanning trees and sparse high-quality graph approximations
(called sparsifiers), one can get algorithms that solve linear systems in Laplacians in timeO(m logO(1) n)
[ST08].

References

[ABN08] I. Abraham, Y. Bartal, and O. Neiman. Nearly tight low stretch spanning trees. In
Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science,
pages 781–790, Oct. 2008.

Lecture 16: October 23, 2009 16-8

[AKPW95] Noga Alon, Richard M. Karp, David Peleg, and Douglas West. A graph-theoretic game
and its application to the k-server problem. SIAM Journal on Computing, 24(1):78–
100, February 1995.

[BH01] Erik Boman and B. Hendrickson. On spanning tree preconditioners. Manuscript,
Sandia National Lab., 2001.

[ST08] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for pre-
conditioning and solving symmetric, diagonally dominant linear systems. CoRR,
abs/cs/0607105, 2008. Available at http://www.arxiv.org/abs/cs.NA/0607105.

[SW09] Daniel A. Spielman and Jaeoh Woo. A note on preconditioning by low-stretch spanning
trees. CoRR, abs/0903.2816, 2009. Available at http://arxiv.org/abs/0903.2816.

[Vai90] Pravin M. Vaidya. Solving linear equations with symmetric diagonally dominant ma-
trices by constructing good preconditioners. Unpublished manuscript UIUC 1990. A
talk based on the manuscript was presented at the IMA Workshop on Graph Theory
and Sparse Matrix Computation, October 1991, Minneapolis., 1990.

