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19.1 A first bound on the Diameter

The diameter of a graph is the maximum over vertices u and v of the distance between u and v.
It is easy to show that graphs with high conductance must have low diameter. If the set of edges
leaving a set must be large relative to the size of the set, then after taking neighborhoods a few
times, one must encounter most of the edges. We now make this intuition precise.

Recall from Lecture 7 the definion of the sparsity of a set S ⊆ V :

sp(S) def=
|∂(S)|

min
(
d(S), d(S̄)

)
,

where we recall that d(S) is the sum of the degrees of vertices in S. We now bound the diameter
of G in terms of

spG
def= min

S
sp(S).

For a vertex u, let Uk denote the set of vertices at distance at most k from u. In particular,
U0 = {u}. For every k such that d(Uk) ≤ |E| /2, we have

d(Uk) ≤ d(Ūk),

so ∣∣∣∂(Uk)
∣∣∣ ≥ spGd(Uk).

On the other hand,
d(Uk+1) ≥ d(Uk) +

∣∣∣∂(Uk)
∣∣∣ .

So, when d(Uk) ≤ |E| /2,
d(Uk+1) ≥ (1 + spG) d(Uk).

As d(u) ≥ 1, this implies
d(Uk) ≥ (1 + spG)k .

So, if we choose a k such that
(1 + spG)k ≥ m, (19.1)

we will guarantee that d(Uk) is at least m = d(V )/2. Define V k analogously to Uk. As both Uk

and V k touch at least half of the edges, there must be an edge between Uk and V k. So, the distance
between u and v is at most 2k + 1.
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When spG is small, 1 + spG is approximately espG , so up to first order (19.1) will be satisfied when

k ≥ lnm
spG

.

So, we obtain an upper bound on the diameter that is essentially

2 lnm
spG

.

We can easily relate this bound to the spectrum of a graph. In Lecture 7, we proved that

spG ≥ ν2/2,

where ν2 is the second-smallest eigenvalue of the normalized Laplacian matrix of a graph. We thus
find that the diameter is essentially1 at most

4 lnm
ν2

.

For regular graphs, Chung [Chu89] obtained the cleaner upper bound of

lnn
2ν2

.

But, one can obtain a quadratically better bound in terms of the eigenvalues.

Before we do that, let me quickly explain how the bound we derived could be made precise and
stronger. To make it stronger, note that

d(Uk+1) ≥ d(Uk) +
∣∣∣∂(Uk)

∣∣∣+
∣∣∣∂(Uk+1)

∣∣∣ .
This saves us a factor of approximately 2. To make the bound precise, I point out that an exami-
nation of the Taylor series of ln(1 + x) reveals that

1
ln(1 + x)

≤ 1
x

+
1
2
. (19.2)

19.2 A better bound on the Diameter

Intuitively, if we can quickly solve linear equations in the Laplacian matrix of a graph by an iterative
method, then the graph should have small diameter. We now make that intuition precise.

Let L be the Laplacian of a connected graph G. Recall that iterative methods work well when there
is a low-degree polynomial in L that is approximately the inverse of L. For non-singular matrices,
we measured this by comparing the product of L with the approximate inverse to the identity. As

1This bound is off by a multiplicative factor of approximately 1 + 2ν2.
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L is singular, we only want to approximate the identity on its span. So, we should compare to the
projector onto its span, which we denote Π and which we recall equals 1

nLKn .

Assume that we have a polynomial p of degree k − 1 such that

‖p(L)L−Π‖ ≤ ε. (19.3)

We know from the analysis of the conjugate gradient that we can find ε-approximate solutions
to linear equations in L by performing k multiplications by L. In fact, recall that we got an
approximate solution to Lx = b, for b in the span of L, by setting

x k = p(L)b.

We then found∥∥∥Lx k − b
∥∥∥ = ‖(Lp(L)−Π)b‖ = ‖(p(L)L−Π)b‖ ≤ ‖(p(L)L−Π)‖ ‖b‖ ≤ ε ‖b‖ .

To use (19.3) to prove an upper bound on the diameter of a graph, let S and T be two sets of
vertices at distance k + 1 from each other. That is, for every vertex s ∈ S and t ∈ T , the distance
from s to t is at least k + 1. The vector LχT is supported on the vertices of distance at most 1
from T , and generally for any polynomial Lp(L) of degree k and zero constant2 term, Lp(P ) is
supported on the set of vertices of distance at most k from T . So,

χT
Sp(L)LχT = 0.

On the other hand, as S and T are disjoint, we have

χT
SΠχT = χT

S

1
n
LKnχT =

1
n
|S| |T | .

Combining these facts with (19.3) gives

1
n
|S| |T | = χT

S (p(L)L−Π) χT ≤ ‖χS‖ ‖(p(L)L−Π)‖ ‖χT ‖ ≤ ε ‖χS‖ ‖χT ‖ . (19.4)

Recall that in Lecture 16 we exploited the following polynomials, built from Chebychev polynomials.

Theorem 19.2.1. For t ≥ 1 and 0 < α < β, there exists a polynomial q(X) of degree t such that
q(0) = 1 and

|q(λ)| ≤ 2
(√

κ− 1√
κ+ 1

)t
,

for all α ≤ λ ≤ β and κ = β/α.

We now use this to obtain a better bound on the diameter of a graph in terms of λn/λ2.
2Be very careful here. You might at first think that a non-zero constant term would be safe, because it looks like

it corresponds to adding a multiple I. But, it really corresponds to adding a multiple of Π.
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Theorem 19.2.2. Let G = (V,E) be a connected graph, and let λ2 ≤ · · · ≤ λn be its Laplacian
eigenvalues. Then, the diameter of G is at most(

1
2

√
λn
λ2

+ 1

)
ln 2n.

Proof. Let s and t be any two vertices in V that are distance at least k+1 from each other. Setting
S = {s} and T = {t}, inequality (19.4) tells us that for every polynomial q of degree k such that
q(0) = 1,

1
n
≤ max

i≥2
q(λi).

Applying the polynomials from Theorem 19.2.1, we find

1
n
≤ 2

(√
κ− 1√
κ+ 1

)k
.

Taking logs and rearraning, this yields the following upper bound on k.

k ≤ ln 2n

ln
(

1 + 2
√

λ2
λn

) ,
1
2

(√
λn
λ2

+ 1

)
,

where the last inequality follows from (19.2).

This later bound is from [CFM94].

19.3 The Hypercube

It is instructive to see how these bounds apply to the hypercube on {0, 1}d. We have n = 2d, λ2 = 2
and λn = 2d. So, Theorem 19.2.2 provides an upper bound on the diameter of the hypercube of
approximately

(
√
d/2) lnn ∼ d3/2.

As the diameter is in fact d, this is a very poor bound. However, we can use the technique from
the previous section to obtain the correct bound on the diameter of the hypercube. Recall that
the eigenvalues of the hypercube are precisely the integers 2i for 1 ≤ i ≤ d. So, we may use the
polynomial

q(x) =
d∏
i=1

(1− x/2i).

While it is comforting to get the correct bound on the diameter of the hypercube, it is not the
easiest way to do so.
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19.4 Probability and Concentration of Measure

Consider d random variables, x1, . . . , xd, each of which is chosen independently and uniformly
from {±1}. Taken as a vector, (x1, . . . , xd) is naturally associated with a vertex of a d-dimensional
hypercube. We can learn a lot about functions of these random variables through a spectral analysis
of the hypercube.

We will consider functions f of these random variables that satisfy a Lipschitz condition:

|{i : xi 6= yi}| = 1 =⇒ |f(x1, . . . , xd)− f(y1, . . . , yd)| ≤ 1.

For example, consider

f(x1, . . . , xd) =
1
2

∑
i

xi. (19.5)

The Concentration of Measure Phenomenon is the observation that such functions are often tightly
concentrated around their median. This may be understood as a strong generalization of the
Chernoff/Hoeffding bounds, which say that the sum (19.5) is tightly concentrated around its mean.
Statements that only rely on the Lipschitz condition are very powerful, as such a condition can
often be proved, even for functions that we understand very poorly.

Let’s see why a function that satisfies the Lipschitz condition is concentrated around its median,
let f be any such function and let V = {±1}d be the vertex set of the d-dimensional hypercube.
Let E be the natural set of edges. The Lipschitz condition says that for every edge (x ,y),

|f(x )− f(y)| ≤ 1.

Let µ be the median of f over V , and let

S = {v ∈ V : f(v) ≤ µ} .

Also, let T be the set of vertices on which f exceeds µ by at least k:

T = {v ∈ V : f(v) > µ+ k} .

The Lipschitz condition tells us that the distance between S and T is at least k. As |S| = n/2, a
spectral analysis will tell us that T must be small if k is big.

We will quantify this by emulating the proof of Theorem 19.2.2. However, we first slightly tighten
up (19.4). Observe that

χT
S (p(L)L−Π) χT = χT

SΠ (p(L)L−Π) ΠχT .

So,
1
n
|S| |T | ≤ ε ‖ΠχS‖ ‖ΠχT ‖ . (19.6)

We have |T | = τn and ‖χT ‖ =
√
n(τ − τ2). So, if S and T are at distance at least k + 1,√

στ

(1− σ)(1− τ)
≤ max

i≥2
q(λi),
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for every degree k polynomial q for which q(0) = 1. Again applying the polynomials of Theo-
rem 19.2.1, we obtain √

στ

(1− σ)(1− τ)
≤ 2

(√
κ− 1√
κ+ 1

)k
,

where κ = λn/λ2. We now set σ = 1/2, and use this inequality to find an upper bound on τ in
terms of k. We find

√
τ ≤ 2

(√
κ− 1√
κ+ 1

)k
= 2

(
1− 2√

κ+ 1

)k
≤ 2e−

2k√
κ+1 .

So,
τ ≤ e−

4k√
κ+1 .

In our case, κ = d. So, we obtain the probability bound

Prx [f(x ) > µ+ k] = Prx [x ∈ T ] = τ ≤ e−
4k√
d+1 .

So, as soon as k exceeds
√
d, the probability that f exceeds the median by more than k becomes

very small. This is a very reasonable concentration bound. However, it is possible to prove even
strong bounds.

For example one can show that

Prx [f(x ) > µ+ k] ≤ e−
k2

2d

(see [AS00, Theorem 7.4.2]). This latter bound is much stronger when k is big, say around a
constant times d. It is possible to improve the bound obtained by the spectral method in this case
as well by using a stronger analysis of the convergence of the Conjugate Gradient (in particular,
case ii in [AL86]). This analysis would also provide a probability exponentially small in d when k
is a constant times d, but would still not be quite as strong.
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